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1.1 Introduction 

 
The Internet is the basis of number of innovative technologies like the World 

Wide Web, Email, P2P applications, VOIP etc. It has enabled instant access to vast and 

diverse resources. But, Internet is also vulnerable to number of attacks from different 

sources. Major categories of attacks during 2006-07 were viruses, insider abuse of access, 

unauthorized access to information, and denial of service (DoS) attacks [1]. It is often 

much easier to disrupt the operation of a network or system than to actually gain access to 

a network. There are number of freely available tools on Internet, from covertly 

exchanged exploit programs to publicly released vulnerability assessment software, to 

degrade performance or even disable vital network services [2]. 

The aim of DoS attack is to prevent legitimate users access to system resources by 

shutting down or seriously slowing down a service provided by a computer system. DoS 

first received large scale public attention in February 2000 when major Internet sites 

including Amazon, Yahoo, CNN and e bay were brought down by DoS attacks. CNN and 

other victims claimed that the attack caused damages totaling $1.7 billion [3]. 

In distributed DoS (DDoS) attack, the attacker uses hundreds or thousands of 

compromised hosts, often residing on different networks, to overload and crash target 

system [4]. Currently, it is not possible to prevent DoS/DDoS attacks because they are 

based on exploiting weaknesses in the core internet protocols which are embedded in the 

underlying network technology. 

Denial of Service (DoS) attacks has proved to be a serious threat to users, 

organizations and infrastructures of the internet. There are two major reasons that make 

DoS attacks attractive for attackers. The first reason is that there are effective automatic 

tools available for attacking any victim, so expertise is not necessarily required [5]. 

Secondly, the attackers use fake source IP addresses to make tracing and stopping of DoS 

difficult. This technique is called IP Spoofing and it involves the manipulation of source 

IP address in the IP header of the transmitted packet. This gives the attacker a form of 

anonymity. It is difficult to solve the problem of IP Spoofing because of lack of security 

features in TCP/IP specifications.  
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1.1.1 DoS Incidents 

 DoS incidents in the Internet between the years 1989 and 1995 were investigated 

in [6]. The three most typical effects were the following: 51% of these incidents filled a 

disk, 33% of the incidents degraded network service, and 26% of the incidents deleted 

some critical files. A single incident was able to cause several types of damages at the 

same time [5].  

The first reported large-scale DDoS attack occurred in August, 1999, against a 

university [7]. This attack shut down the victim’s network for more than two days. In 

February 7, 2000, several high-profile Web sites were attacked, which caused them to go 

offline for several hours [7]. In some cases these DDoS attacks were able to produce 

about 1 Gbps of attack traffic against a single victim.  

The backscatter analysis was used to assess the number, duration, and focus of 

DoS attacks in the Internet. Backscatter is called the unsolicited response traffic which 

the victim sends in response to attack packets with spoofed IP source addresses. The 

results indicate more than 12 000 attacks against more than 5000 distinct victims during 

the 3-week period examined in February, 2001 [5].  

Packet fragmentation in real networks was studied in [8]. Bugs in the fragment 

handling software are exploited in many logic DoS attacks, and the results of this study 

still indicate the presence of these kinds of DoS attacks in the Internet. The Coordination 

Center of the Computer Emergency Response Team (CERT) was attacked in May, 2001. 

A DDoS attack caused its web site to be available only intermittently for more than two 

days [5]. 

Internet service providers (ISP) in UK have been targets for DDoS attacks during 

2002. Some customers experienced a downtime of 12 hours in one of these attacks [9]. 

The Domain Name System (DNS) is a continuous target for DoS attacks. In 

October, 2002, all root name servers experienced an exceptionally intensive DoS attack. 

Some DNS requests were not able to reach a root name server due to congestion caused 

by the DoS attack. Another major DoS attack on June 15, 2004, against name servers in 

Akamai’s Content Distribution Network (CDN) blocked nearly all access to many sites 

for more than two hours. The affected sites included Apple Computer, Google, Microsoft, 



 4

and Yahoo. These companies have outsourced their DNS service to Akamai to enhance 

service performance [5]. 

In UK online bookmaking, betting, and gambling sites have been extorted with 

DoS attacks at least during 2004 by unidentified attackers. The Internet-based business 

service of Al Jazeera was brought down due to a DoS attack in January, 2005 [10]. Al 

Jazeera provides many Arabic-language news services. 

The text-to-speech translation application running in the Sun Microsystems’s Grid 

Computing system was disabled with a DoS attack in March, 2006. This attack was 

carried out during the opening day of this service [5].  

 

1.2 General Security Terminology  
 

 The subject of this thesis is related to security in computer networks, that is 

network security. Generally the word security can be preceded by practically any asset to 

be protected, such as software security and computer security.  

 

Security 

 Security can be defined as “A continuous process towards reasonable resistance 

against known risks” [5].  

 

Information Security  

 Information security can be defined as “A continuous process towards reasonable 

protection of information against unauthorized disclosure, transfer, modification, 

destruction or control” [11].  

 

Computer Security  

 The definition of computer security is based mostly on “Computer Security” 

written by Dieter Gollmann. It is defined as “A continuous process towards a reasonably 

good prevention and detection of unauthorized actions by users of a computer system” 

[5].  
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Network Security  

 Since most of the existing computers are connected to networks, so network 

security is important. It can be defined as “A continuous process towards meeting 

reasonable objectives of providing confidentiality, integrity, availability and access for 

legitimate users of network resources” [12]. Thus network security measures are needed 

to protect data during their transmission. 

Defending against DoS attacks is mostly network security, as these attacks are 

mostly carried out from a remote location through a network. Separate network security 

devices are typically required for defending against DoS attacks. Defending against DoS 

attacks can also be seen to be part of computer security, as DoS attacks ultimately exploit 

weaknesses in computer systems [5].  

 

Confidentiality  

 The property that information is not made available to or disclosed to 

unauthorized individuals, entities or processes [5]. Public or Private Key Cryptography is 

commonly employed to ensure confidentiality of data being transmitted.  

 

Integrity 

 The assurance that data received are exactly as sent by an authorized entity (i.e, 

contains no modification, insertion, deletion or replay) [13].  

 

Availability  

 The property of a system or a system resource, being accessible and usable upon 

demand by an authorized entity, according to performance specifications for the system 

(i.e, a system is available if it provides services according to the system design whenever 

users request them) [5].  

 

Access Control  

 In the context of network security, access control is the ability to limit and control 

the access to host systems and applications via communication links. To achieve this, to 
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achieve this each entity must first be identified or authenticated, so that access rights can 

be tailored to the individual [13].  

 

Authentication  

 The assurance that the communicating entity is the one that it claims to be. Peer 

Entity Authentication is used in association with a logical connection to provide 

confidence in the identity of the entities connected. Data Origin Authentication is used 

in association with connectionless transfer and provides assurance that the source of 

received data is as claimed [13].  

 
Non-Repudiation  

 It provides protection against the denial of transmission or reception of 

information by the source or destination respectively. Digital Signatures are used to 

ensure non-repudiation.  

 

1.3 Denial of Service Terminology  

 
 International Organization for Standardization (ISO) has given the following 

definition for denial of service in the standard ISO 7498-2:1989. 

 

Denial of Service (DoS) 

 The prevention of authorized access to resources or the delaying of time-critical 

operations [14].  

 Examples of resources in this definition are network bandwidth, processing 

capacity, disk space, memory and static memory structures [5].  

 An attack (which doesn’t have to be successful) is defined in ANSI’s Telecom 

Glossary 2000 [15] to be an attempt to violate security. This will be used as the basis for 

defining a DoS attack. 
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Denial of Service Attack 

 DoS attacks can be defined as: An intentional attempt to prevent or degrade the 

availability of resources [5].  

 It should be noted that DoS can also result from unintentional human errors, 

design faults, or software bugs [5]. 

 

1.4 Objectives of the Research 

 
The primary objective of this research is to provide IP traceback support for 

computer networks against DoS attacks. However, this thesis concentrates on the 

following areas. 

 

• To study and provide a comprehensive description of all types of DoS/DDoS 

attacks in computer networks. 

• To study and provide a comprehensive description of all the existing IP traceback 

techniques and to carry out a comparison of these techniques. 

• To propose a new effective IP traceback technique capable of tracing any type of 

DoS attack.  

• Extending the proposed technique for IPv6 and Mobile IP.  

 

1.5 Structure of the Thesis  

 
Chapter 2, Networking Fundamentals. This chapter provides a brief description of 

OSI and TCP/IP reference models. 

Chapter 3, IPv4 and IPv6 Basics. This chapter provides a complete description of 

IPv4 and IPv6 headers. It includes the functionality of different fields in the IPv4 and 

IPv6 headers along with the addressing methodology for both IPv4 and IPv6 

networks.  

Chapter 4, Attack Methods. This chapter describes the various types of DoS and 

DDoS attacks in IP networks.  
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Chapter 5, Existing IP Traceback Techniques. This chapter gives a brief description 

of existing IP traceback methods. A comparison of existing techniques is also carried 

out in this chapter.  

Chapter 6, Proposed IP Traceback Technique. This chapter gives a complete 

description of our proposed traceback technique (for both IPv4 and IPv6 networks) 

supported by the simulation results.  

Chapter 7, Mobile IP. This chapter provides a brief description of Mobile IPv4.  
Chapter 8, IP Traceback for Mobile IP. This chapter provides a complete description 

of our proposed traceback technique for Mobile IPv4 networks. It also provides a 

brief overview of DoS attacks in case of Mobile IP networks. 
Chapter 9, Conclusion and Future work. 
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2.1 Networking Fundamentals  

 
A network is simply a collection of computers or other hardware devices that are 

connected together, either physically or logically, using special hardware and software, to 

allow them to exchange information and cooperate. Networks are used for an incredible 

variety of different purposes. The widespread networking of personal computers is a 

relatively new phenomenon. For the first decade or so of their existence, PCs were very 

much independent and were rarely connected together. In the early 1990s, PC networking 

began to grow in popularity as businesses realized the advantages that networking could 

provide. By the late 1990s, networking in homes with two or more PCs started to really 

take off as well. 

 

2.1.1 The Advantages (Benefits) of Networking  

Networks allow computers, and hence their users, to be connected together. They also 

allow for the easy sharing of information and resources, and cooperation between the 

devices in other ways. Some of the major benefits are [1]: 

1. Connectivity and Communication: Networks connect computers and the users of 

those computers. Individuals within a building or work group can be connected 

into LAN. 

2. Data Sharing: One of the most important uses of networking is to allow the 

sharing of data. True networking allows thousands of employees to share data 

much more easily and quickly. 

3. Hardware Sharing: Networks facilitate the sharing of hardware devices. For 

example, instead of giving each of 10 employees in a department an expensive 

color printer, one printer can be placed on the network for everyone to share.  

4. Internet Access: The Internet is itself an enormous network. The significance of 

the Internet on modern society is hard to exaggerate, especially for technical 

fields.  

5. Internet Access Sharing: Small computer networks allow multiple users to share 

a single Internet connection. Special hardware devices allow the bandwidth of the 

connection to be easily allocated to various individuals as they need it. 
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6. Data Security and Management: In a business environment, a network allows the 

administrators to much better manage the company's critical data. Instead of 

having this data spread over dozens or even hundreds of small computers in a 

haphazard fashion as their users create it. 

 

2.1.2 The Disadvantages (Costs) of Networking  

There are some points against the advantages of networking as well [1]: 

1. Network Hardware, Software and Setup Costs:  Setting up a network requires an 

investment in hardware and software, as well as funds for planning, designing and 

implementing the network.  

2. Hardware and Software Management and Administration Costs: In all, small or 

large implementations, ongoing maintenance and management of the network 

require the care and attention of an IT professional.  

3. Undesirable Sharing: While networking allows the easy sharing of useful 

information, it also allows the sharing of undesirable data.  

4. Illegal or Undesirable Behavior: Networking facilitates useful connectivity and 

communication, but also brings difficulties with it. Typical problems include 

abuse of company resources, distractions that reduce productivity, downloading 

of illegal or illicit materials, and even software piracy.  

5. Data Security Concerns: If a network is implemented properly, it is possible to 

greatly improve the security of important data. In contrast, a poorly-secured 

network put critical data at risk, exposing it to the potential problems associated 

with hackers, unauthorized access and even sabotage. 

 

2.1.3 Performance Measurements: Bandwidth, Throughput and Latency  

There are a number of terms that are commonly used to refer to various aspects of 

network performance. Most important are [2]: 

1. Bandwidth: Bandwidth is a widely-used term that usually refers to the data-

carrying capacity of a network or data transmission medium. It indicates the 

maximum amount of data that can pass from one point to another in a unit of 
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time. Bandwidth is still used in these two senses: frequency band width and data 

capacity.  

2. Throughput: Throughput is a measure of how much actual data can be sent per 

unit of time across a network, channel or interface. While throughput can be a 

theoretical term like bandwidth, it is more often used in a practical sense, for 

example, to measure the amount of data actually sent across a network in the real 

world.  

3. Latency: This refers to the timing of data transfer on a communications channel 

or network. One important aspect of latency is how long it takes from the time a 

request for data is made until it starts to arrive. Low latency is considered better 

than high latency. 

 

2.1.4 International Networking Standards Organizations  

In order to facilitate the development of open standards, organizations are needed 

that will coordinate the creation and publishing of documents. The most important are 

[2]: 

1. International Organization for Standardization (ISO): Probably the biggest 

standards organization in the world, the ISO is really a federation of standards 

organizations from dozens of nations. In the networking world, the ISO is best 

known for its OSI Model. 

2. American National Standards Institute (ANSI): ANSI is the main organization 

responsible for coordinating and publishing computer and information technology 

standards in the United States.  

3. Institute of Electrical and Electronics Engineers (IEEE): The IEEE is a well-

known professional organization for those in the electrical or electronics fields, 

including computers and networking.  

4. Electronic Industries Alliance (EIA): The EIA is an international industry 

association that is best known for publishing electrical wiring and transmission 

standards.  
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5. Telecommunications Industry Association (TIA): The TIA is the 

communications sector of the EIA, and is responsible for developing 

communications standards.  

6. International Telecommunication Union - Telecommunication Standardization 

Sector (ITU-T): ITU-T is another large international body that develops standards 

for the telecommunications industry. The ITU-T was formerly named the 

International Telephone and Telegraph Consultative Committee or CCITT.  

 

2.2 The Open System Interconnection (OSI) Reference Model  

 
Models are useful because they help us understand difficult concepts and 

complicated systems. When it comes to networking, there are several models that are 

used to explain the roles played by various technologies, and how they interact. The most 

popular and commonly used is the Open System Interconnect (OSI) Reference Model 

presented by ISO. The idea behind the OSI Reference Model is to provide a framework 

for both designing networking systems and for explaining how they work.  

 The Open System Interconnection (OSI) reference model describes how 

information from software application of one computer moves through the network 

medium to a software application in another computer. The OSI reference model is a 

conceptual model composed of seven layers, each specifying particular network 

functions. The model was developed by the International Organization for 

Standardization (ISO) in 1984, and it’s now considered as primary architectural model 

for inter computer communication. The OSI model divides the tasks involved with 

moving information between networked computers into seven smaller, more manageable 

task groups. A task or group of tasks is then assigned to each of the seven OSI layers. 

Each layer is reasonably self-contained so that the tasks assigned to each layer can be 

implemented independently. This enables the solutions offered by one layer to be updated 

without adversely affecting the other layers [3].  
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Table 2.1: OSI Reference Model 

Layer – 1 Application 

Layer – 2 Presentation 

Layer – 3 Session 

Layer – 4 Transport 

Layer - 5 Network 

Layer - 6 Data link 

Layer - 7 Physical 

 

The seven layers of the OSI Model can be divided into two categories 

a) Upper Layers: The upper layers of the OSI model deal with application issues 

and generally are implemented only in software. The highest layer, the application 

layer, is closest to the user end. Both users and application layer possesses 

interaction with software application that contains a communication component. 

The term upper layer is sometimes used to refer to any layer above another layer 

in the OSI model. 

 

b) Lower Layers: The lower layers of the OSI model handle the data transport 

issues. The physical and the data link layer are implemented in hardware and 

software. The lowest layer, physical layer, is closest to physical network medium 

and is responsible for actually placing information on the medium. 

 

Table 2.2: Two set of layers making OSI Model 

Layer – 1 Application 

Upper layers - Application Layer – 2 Presentation 

Layer – 3 Session 

Layer – 4 Transport 

Lower layers - Data Transport 
Layer – 5 Network 

Layer – 6 Data link 

Layer – 7 Physical 
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2.2.1 OSI Model Physical Layer 

The physical layer defines the electrical, mechanical, procedural and functional 

specifications for activating, maintaining and deactivating the physical link between 

communicating network systems. Physical layer specifications define characteristics such 

as voltage levels, timing of voltage changes, physical data rates, maximum transmission 

distances and physical connectors. In general, then, physical layer technologies are ones 

that are at the very lowest level and deal with the actual ones and zeroes that are sent over 

the network [3].  

The following are the main responsibilities of the physical layer in the OSI 

Reference Model [1]: 

1. Definition of Hardware Specifications: The details of operation of cables, 

connectors, wireless radio transceivers, network interface cards and other 

hardware devices are generally a function of the physical layer.  

2. Encoding and Signaling: The physical layer is responsible for various 

encoding and signaling functions that transform the data from bits that reside 

within a computer or other device into signals that can be sent over the 

network.  

3. Data Transmission and Reception: After encoding the data appropriately, the 

physical layer actually transmits the data and receives it.  

4. Topology and Physical Network Design: The physical layer is also 

considered the domain of many hardware-related network design issues, such 

as LAN and WAN topology.  

 

2.2.2 OSI Model Data Link Layer 

 The second-lowest layer in the OSI Reference Model stack is the data link layer, 

often abbreviated DLL. The data link layer provides reliable transmit of data across 

physical network link. The different data link layer specifications define different 

network and protocol characteristics, including physical addressing, network topology, 

error notification, sequencing of frames, flow control. Network topology consists of data 

link layer specifications that often define how devices are to be physically connected, 

such as in a bus or ring topology. Error notification alerts the upper layer protocols that a 
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transmission error has occurred. Finally, flow control moderates the transmission of the 

data so that the receiving device is not crowded with more traffic than it can handle in 

one time [3]. 

 The Institute of Electrical and Electronics Engineers (IEEE) has sub divided the 

data link layers into two layers [1]: 

 

Table 2.3: Layer 2 sub-division 

Data Link Layer 
LLC Sub layer 

MAC Sub layer 

 

Logical Link Control (LLC) 

The Logical Link Control (LLC) sub layer of the data link layer manages 

communications between devices over a single link of network. LLC is defined in IEEE 

802.2 specification and supports both connectionless and connection oriented services 

used by higher layer protocols to share a single physical data link. 

Media Access control (MAC) 

 The Media Access Control (MAC) sub layer of data link layer manages protocol 

access to physical network medium. The IEEE MAC specifications define MAC 

addresses, which enable multiple devices to uniquely identify one another at the data link 

layer. 

The following are the key tasks performed at the data link layer [1]: 

1. Data Framing: The data link layer is responsible for the final encapsulation 

of higher-level messages into frames that are sent over the network at the 

physical layer.  

2. Addressing: The data link layer is the lowest layer in the OSI model that is 

concerned with addressing: labeling information with a particular destination 

location. Each device on a network has a unique number, usually called a 

hardware address or MAC address that is used by the data link layer protocol 

to ensure that data intended for a specific machine gets to it properly.  

3. Error Detection and Handling: The data link layer handles errors that occur 

at the lower levels of the network stack. For example, a cyclic redundancy 
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check (CRC) field is often employed to allow the station receiving data to 

detect if it was received correctly 

 

2.2.3 OSI Model Network Layer 

 The third-lowest layer of the OSI Reference Model is the network layer. 

The network layer defines the network addresses, which differ from MAC addresses. 

Some network layer implementations, such as Internet Protocol (IP), define network 

addresses in a way that route selection can be determined systematically by comparing 

the source network address with the destination network address and applying the subnet 

mask. Because this layer defines the logical network layout, routers can use this layer to 

determine how to forward the packets [3].  

Some of the specific jobs normally performed by the network layer include [1]: 

1. Logical Addressing: Every device that communicates over a network has 

associated with it a logical address, sometimes called a layer three address. 

For example, on the Internet, the internet protocol (IP) is the network layer 

protocol and every machine has an IP address.  

2. Routing: Moving data across a series of interconnected networks is probably 

the defining function of the network layer. It is the job of the devices and 

software routines that function at the network layer to handle incoming 

packets from various sources, determine their final destination, and then figure 

out where they need to be sent to get them where they are supposed to go.  

3. Datagram Encapsulation: The network layer normally encapsulates 

messages received from higher layers by placing them into datagrams (also 

called packets) with a network layer header.  

4. Fragmentation and Reassembly: The network layer must send messages 

down to the data link layer for transmission. Some data link layer technologies 

have limits on the length of any message that can be sent. If the packet that the 

network layer wants to send is too large, the network layer must split the 

packet up, send each piece to the data link layer, and then have pieces 

reassembled once they arrive at the network layer on the destination machine.  
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5. Error Handling and Diagnostics: Special protocols are used at the network 

layer to allow devices that are logically connected, or that are trying to route 

traffic, to exchange information about the status of hosts on the network or the 

devices themselves 

 

2.2.4 OSI Model Transport Layer 

The fourth and the middle layer of the OSI Reference Model protocol stack is the 

transport layer. It is more often associated with the lower layers, because it concerns itself 

with the transport of data, but its functions are also somewhat high-level. The transport 

layer really acts as a link between the abstract world of applications at the higher layers, 

and the concrete functions of layers one to three. Due to this role, the transport layer’s 

overall job is to provide the necessary functions to enable communication between 

software application processes on different computers. The transport layer is charged 

with providing a means by which these applications can all send and receive data using 

the same lower-layer protocol implementation. Thus, the transport layer is sometimes 

said to be responsible for end-to-end or host-to-host transport [3]. 

The specific functions often performed at the transport layer are [1]: 

1. Port Addressing: This enables many different software programs to use a 

network layer protocol simultaneously. The best example of transport-layer 

process-level addressing is the TCP/UDP used in TCP/IP, which allows 

applications to be individually referenced on any TCP/IP device.  

2. Multiplexing and Demultiplexing: Transport layer protocols on a sending 

device multiplex the data received from many application programs for 

transport, combining them into a single stream of data to be sent. The same 

protocols receive data and then demultiplex it from the incoming stream of 

datagrams, and direct each package of data to the appropriate recipient 

application processes.  

3. Segmentation, Packaging and Reassembly: The transport layer segments the 

large amounts of data it sends over the network into smaller pieces on the 

source machine, and then reassembles them on the destination machine.  



 20

4. Connection Establishment, Management and Termination: Transport layer 

connection-oriented protocols are responsible for the series of 

communications required to establish a connection, maintain it as data is sent 

over it, and then terminate the connection when it is no longer required.  

5. Acknowledgments and Retransmissions: The transport layer is where many 

protocols are implemented that guarantee reliable delivery of data. This is 

done using a variety of techniques, most commonly the combination of 

acknowledgments and retransmission timers.  

6. Flow Control: Transport layer protocols that offer reliable delivery also often 

implement flow control features. 

 

2.2.5 OSI Model Session Layer 

The fifth layer in the OSI Reference Model is the session layer. The session layer 

is the first one where much practical matters related to the addressing, packaging and 

delivery of data are left behind; they are functions of layers four and below. It is the 

lowest of the three upper layers, which collectively are concerned mainly with software 

application issues and not with the details of network and internet implementation [3]. 

 

2.2.6 OSI Model Presentation Layer 

The presentation layer is the sixth layer of the OSI Reference Model protocol 

stack. It is different from the other layers in two key respects. First, it has a much more 

limited and specific function than the other layers. Second, it is used much less often than 

the other layers; in many types of connections it is not required. The name of this layer 

suggests its main function that it deals with the presentation of data. More specifically, 

the presentation layer is charged with taking care of any issues that might arise where 

data sent from one system needs to be viewed in a different way by the other system. It 

also takes care of any special processing that must be done to data from the time an 

application tries to send it until the time it is sent over the network [3]. Its main functions 

are [1]: 

1. Translation: Networks can connect very different types of computers 

together: PCs, Macintoshes, UNIX systems, servers and mainframes can all 
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exist on the same network. These systems have many distinct characteristics 

and represent data in different ways; they may use different character sets for 

example. The presentation layer handles the job of hiding these differences 

between machines.  

2. Compression: Compression (and decompression) may be done at the 

presentation layer to improve the throughput of data. 

3. Encryption: Some types of encryption (and decryption) are performed at the 

presentation layer. This ensures the security of the data as it travels down the 

protocol stack. For example, one of the most popular encryption schemes that 

are usually associated with the presentation layer is the secure socket layer 

(SSL) protocol. Not all encryption is done at layer 6, however; some 

encryption is often done at lower layers in the protocol stack. 

 

2.2.7 OSI Model Application Layer 

At the top of the OSI Reference Model stack of layers is the application layer. 

This too is named very appropriately: the application layer is the one that is used by 

network applications. These programs are what actually implement the functions 

performed by users to accomplish various tasks over the network. In the OSI model, the 

application layer provides services for user applications to employ. For example, web 

browser; it makes use of the services offered by a protocol that operates at the application 

layer, which is called the Hypertext Transfer Protocol (HTTP). As the top of the stack 

layer, the application layer is the only one that does not provide any services to the layer 

above it in the stack. Instead, it provides services to programs that want to use the 

network. So the responsibilities at this layer are simply to implement the functions that 

are needed by users of the network. And to issue the appropriate commands to make use 

of the services provided by the lower layers [1]. 
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2.3 TCP/IP Protocol Suite and Architecture  
 

 

 

 
Figure 2.1: TCP/IP Reference Model [4] 

 

Modern internetworking is dominated by the suite known as TCP/IP. Named for 

two key protocols of the many that comprise it, TCP/IP has been in continual 

development and use for about three decades. In that time, it has evolved from an 

experimental technology used to hook together a handful of research computers, to the 

powerhouse of the largest and most complex computer network in history: the global 

Internet, connecting together millions of networks and end devices. 

The OSI Model consists of seven layers that represent a functional division of the 

tasks required to implement a network. The TCP/IP protocol suite was in fact created 

before the OSI Reference Model; as such, its inventors didn't use the OSI model to 

explain TCP/IP architecture. The TCP/IP model uses four layers that logically span the 
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equivalent of the top six layers of the OSI reference model. The following are the TCP/IP 

model layers, starting from the bottom [4]. 

 

Table 2.4: OSI Reference Model and TCP/IP Model Layers [4] 

Layer - 1 Application 

APPLICATION Layer - 2 Presentation

Layer - 3 Session 

Layer - 4 Transport (Host-to-Host)  TRANSPORT 

Layer - 5 Network INTERNET 

Layer - 6 Datalink NETWORK INTERFACE 

Layer - 7 Physical (Hardware) 

   

 OSI Model TCP/IP Model 

 

2.3.1 Network Interface Layer  

This layer represents the place where the actual TCP/IP protocols running at 

higher layers interface to the LAN. None of the core IP protocols run at this layer. 

Despite this, the network interface layer is part of the architecture. It is equivalent to the 

data link layer of OSI Model and is also sometimes called the link layer [4].  

On many TCP/IP networks, there is no TCP/IP protocol running at all on this 

layer, because it is simply not needed. For example running TCP/IP over an Ethernet, 

then Ethernet handles layer two (and layer one) functions. However, the TCP/IP 

standards do define protocols for TCP/IP networks that do not have their own layer two 

implementation. These protocols, the Serial Line Internet Protocol (SLIP) and the Point-

to-Point Protocol (PPP), serve to fill the gap between the network layer and the physical 

layer. They are commonly used to facilitate TCP/IP over direct serial line connections 

(such as dial-up telephone networking) and other technologies that operate directly at the 

physical layer [1]. 
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2.3.2 Internet Layer 

This layer corresponds to the network layer in the OSI Reference Model and for 

that reason is sometimes called the network layer even in TCP/IP model. It is responsible 

for typical layer three jobs, such as logical device addressing, data packaging, 

manipulation and delivery, and last but not least, routing. At this is the Internet Protocol 

(IP), arguably the heart of TCP/IP, as well as support protocols such as ICMP and the 

routing protocols (RIP, OSFP, BGP, etc.) The new version of IP, called IP version 6, will 

be used for the Internet of the future and is also at this layer [4]. 

 

2.3.3 (Host-to-Host) Transport Layer  

The primary job of this layer is to facilitate end-to-end communication over an 

internetwork. It is in charge of allowing logical connections to be made between devices 

to allow data to be sent either unreliably or reliably. It is also here that identification of 

the specific source and destination application process is accomplished 

The formal name of this layer is often shortened to just the transport layer; the key 

TCP/IP protocols at this layer are the Transmission Control Protocol (TCP) and User 

Datagram Protocol (UDP). The TCP/IP transport layer corresponds to the layer of the 

same name in the OSI model (layer four) but includes certain elements that are arguably 

part of the OSI session layer. For example, TCP establishes a connection that can persist 

for a long period of time, which some people say makes a TCP Connection more like a 

session [4]. 

 

2.3.4 Application Layer  

This is the highest layer in the TCP/IP model. It is a rather broad layer, 

encompassing layers five through seven in the OSI model. The TCP/IP model better 

reflects the blended nature of the divisions between the functions of the higher layers in 

the OSI model, which in practical terms often seem rather arbitrary. It really is hard to 

separate some protocols in terms of which of layers five, six or seven they encompass. 

Numerous protocols reside at the application layer. These include application protocols 

such as HTTP, FTP and SMTP for providing end users services, as well as administrative 

protocols like SNMP, DHCP and DNS [4]. 
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Figure 2.2: Data Movement in TCP/IP Model [1]. 
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3.1 Internet Protocol (IP) 

 
The Internet Protocol (IP) is the core of the TCP/IP protocol suite and its main 

protocol at the network layer. The network layer is primarily concerned with the delivery 

of data between devices that may be on different networks that are interconnected in an 

arbitrary manner. IP is the mechanism by which this data is sent on TCP/IP networks. As 

the layer three protocol, it provides a service to layer four in the TCP/IP stack, 

represented mainly by the TCP and UDP protocols. This service is to take data that has 

been packaged by either TCP or UDP, manipulate it as necessary, and send it out. This 

service is sometimes called network datagram delivery. In a nutshell IP sends data from 

point A to point B over a network of connected networks. The key characteristics used to 

describe IP and the general manner in which it operates are [1]: 

• Universally-Addressed: In order to send data from point A to point B, it is 

necessary to ensure that devices know how to identify which device is point B. IP 

defines the addressing mechanism for the network and uses these addresses for 

delivery purposes.  

• Underlying-Protocol Independent: IP is designed to allow the transmission of 

data across any type of underlying network that is designed to work with a 

TCP/IP stack. It includes provisions to allow it to adapt to the requirements of 

various lower-level protocols. 

• Connectionless: IP is a connectionless protocol. This means that when A wants to 

send data to B, it doesn't first set up a connection to B and then send the data, it 

just makes the datagram and sends it. 

• Delivered Without Acknowledgments: IP unreliable in nature. It doesn't use 

acknowledgements. When device B gets a datagram from device A, it doesn't 

send back an acknowledgement to tell A that the datagram was received.  

 

3.1.1 IP Functions  

IP performs four basic functions at the network layer, namely [2]: 

1. Addressing: In order to perform the job of delivering datagrams, IP must know 

where to deliver them. For this reason, IP includes a mechanism for host 
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addressing. Furthermore, since IP operates over networks, it is designed to allow 

unique addressing of devices across arbitrarily large networks. It also contains a 

structure to facilitate the routing of datagrams to distant networks if required. 

2. Data Encapsulation and Formatting/Packaging: As the TCP/IP network layer 

protocol, IP accepts data from the transport layer protocols UDP and TCP. It then 

encapsulates this data into an IP datagram using a special format prior to 

transmission.  

3. Fragmentation and Reassembly: IP datagrams are passed down to the data link 

layer for transmission on the network. However, the maximum frame size of each 

physical/data-link network using IP may be different. For this reason, IP includes 

the ability to fragment IP datagrams into pieces so they can each be carried on the 

local network. The receiving device uses the reassembly function to recreate the 

whole IP datagram again.  

4. Routing / Indirect Delivery: When an IP datagram must be sent to a destination 

on the same local network, this can be done easily using the network's underlying 

protocol using direct delivery. However, in most cases the final destination is on a 

distant network not directly attached to the source. In this situation the datagram 

must be delivered indirectly. This is accomplished by routing the datagram 

through intermediate devices called routers. IP accomplishes this with support 

from the other protocols. 

 

3.2 Internet Protocol Version 4 (IP or IPv4) 
 

Internet Protocol, version 4 of IP was the first that was widely used in modern 

TCP/IP. IPv4, as it is sometimes called to differentiate it from the newer IPv6, is the 

Internet Protocol version in use on the Internet today, and an implementation of the 

protocol is running on hundreds of millions of computers. It provides the basic datagram 

delivery capabilities upon which all of TCP/IP works and it has proven its quality in use 

over a period of more than two decades [3]. 
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3.2.1 IPv4 Datagram Format 

Data transmitted over an internet using IP is carried in messages called IP 

datagrams. Like all network protocol messages, IP uses a specific format for its 

datagrams. The IPv4 datagram is conceptually divided into two pieces [4]:  

• The Header. 

• The Payload. 

The header contains addressing and control fields, while the payload carries the 

actual data to be sent over the network. Unlike some message formats, IP datagrams do 

not have a footer following the payload. 

Even though IP is a relatively simple, connectionless, unreliable protocol, the IPv4 

header carries a fair bit of information, which makes it rather large. At a minimum, it is 

20 bytes long, and with options can be significantly longer.  

 

Version 
Header 

Length 
Type of Service (TOS) Total Length 

Identification Flags Fragment Offset 

TTL Protocol Header Checksum 

Source Address 

Destination Address 

Options & Padding 

Data 

Figure 3.1: IPv4 datagram Format [4] 

 

Version (4 bits): Identifies the version of IP used to generate the datagram. For IPv4, 

this is of course the number 4. The purpose of this field is to ensure compatibility 

between devices that may be running different versions of IP.  
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Internet Header Length (4 bits): Specifies the length of the IP header, in 32-bit 

words. This includes the length of any options fields and padding. The normal value 

of this field when no options are used is 5. 

Type of Service –ToS (1 byte): A field designed to carry information to provide 

quality of service features, such as prioritized delivery, for IP datagrams. 

Total Length – TL (2 bytes): Specifies the total length of the IP datagram, in bytes. 

Since this field is 16 bits wide, the maximum length of an IP datagram is 65,535 

bytes, though most are much smaller. 

Identification (2 bytes): This field contains a 16-bit value that is common to each of 

the fragments belonging to a particular message, for datagrams originally sent 

unfragmented it is still filled in, so it can be used if the datagram must be fragmented 

by a router during delivery. This field is used by the recipient to reassemble messages 

without accidentally mixing fragments from different messages. This is needed 

because fragments may arrive from multiple messages mixed together, since IP 

datagrams can be received out of order from any device. 

Flags (3 bits): Bits reserved for flag indications.  

Fragment Offset (13 bits): When fragmentation of a message occurs, this field 

specifies the offset, or position, in the overall message where the data in this fragment 

goes. It is specified in units of 8 bytes (64 bits). The first fragment has an offset of 0. 

Time to live - TTL (1 byte): Specifies how long the datagram is allowed to live on the 

network, in terms of router hops. Each router decrements the value of the TTL field 

(reduces it by one) prior to transmitting it. If the TTL field drops to zero, the 

datagram is assumed to have taken too long a route and is discarded. 

Protocol (1 byte): Type of upper layer protocol. 

Header Checksum (2 bytes): A checksum computed over the header to provide basic 

protection against corruption in transmission. This is not the complex CRC code 

typically used by data link layer technologies but it's just a 16-bit checksum. It is 

calculated by dividing the header bytes into words (a word is two bytes) and then 

adding them together. The data is not check summed, only the header. At each hop 

the device receiving the datagram does the same checksum calculation and on a 

mismatch, discards the datagram as damaged. 
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Source Address (4 bytes): The 32-bit IP address of the originator of the datagram. 

Note that even though intermediate devices such as routers may handle the datagram, 

they do not normally put their address into this field—it is always the device that 

originally sent the datagram. 

Destination Address (4 bytes): The 32-bit IP address of the intended recipient of the 

datagram. Again, even though devices such as routers may be the intermediate targets 

of the datagram, this field is always for the ultimate destination. 

Options (variable): One or more of several types of options may be included after the 

standard headers in certain IP datagrams. 

Padding (variable): If one or more options are included, and the number of bits used 

for them is not a multiple of 32, enough zero bits are added to pad out the header to a 

multiple of 32 bits (4 bytes). 

Data (variable): The data to be transmitted in the datagram, either an entire higher-

layer message or a fragment of one. 

 

3.2.2 IP Datagram Options and Option Format  

All IP datagrams must include the standard 20-byte header, which contains key 

information such as the source and destination address of the datagram, fragmentation 

control parameters, length information and more. In addition to these invariable fields, 

the creators of IPv4 included the ability to add options that provide additional flexibility 

in how IP handles datagrams. Use of these options is optional. However, all devices that 

handle IP datagrams must be capable of properly reading and handling them. The IP 

datagram may contain zero, one or more options, which makes the total length of the 

Options field in the IP header variable. Each of the options can be either a single byte 

long, or multiple bytes in length, depending on how much information the option needs to 

convey. When more than one option is included they are just concatenated together and 

put into the Options field as a whole. Since the IP header must be a multiple of 32 bits, a 

Padding field is included if the number of bits in all options together is not a multiple of 

32 bits [4]. 

The description below lists most common IPv4 options, showing the option class, 

option number and length for each [1]. 
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Security (option 2 – 11 bytes): An option provided for the military to indicate the 

security classification of IP datagrams. 

Time Stamp (option 4 – variable): This option is similar to the Record Route option. 

However, instead of each device that handles the datagram inserting its IP address 

into the option, it puts in a timestamp, so the recipient can see how long it took for the 

datagram to travel between routers. As with the Record Route option, the length of 

this option is set by the originating device and cannot be enlarged by intermediate 

devices. 

Record Route (option 7 – variable): This option allows the route used by a datagram 

to be recorded within the header for the datagram itself. If a source device sends a 

datagram with this option in it, each router that handles the datagram adds its IP 

Address to this option. The recipient can then extract the list of IP Addresses to see 

the route taken by the datagram.  

Traceroute (option 18 – variable): Used in the enhanced implementation of the 

traceroute utility. 

 

3.2.3 IP Routing and the Process of Next-Hop Routing  

When a datagram is sent between source and destination devices that are not on 

the same physical network, the datagram must be delivered indirectly between the 

devices, a process called routing. It is this ability to route information between devices 

that may be far away that allows IP to create the equivalent of a virtual network that 

spans potentially thousands of physical networks. 

Even though IP lets devices connect over the network using indirect delivery, all 

of the actual communication of datagrams occurs over physical networks using routers. 

We rely on intermediate devices that are each physically connected to each other in a 

variety of ways to form a mesh containing millions of paths between networks. To get the 

datagram where it needs to go, it needs to be handed off from one router to the next, until 

it gets to the physical network of the destination device. The general term for this is next 

hop routing [2].  

In IP networks routing is done on a step-by-step basis, one hop at a time. When 

we decide to send a datagram to a device on a distant network, we don't know the exact 
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path that the datagram will take; we only have enough information to send it to the 

correct router to which we are attached. That router, in turn, looks at the IP Address of 

the destination and decides where the datagram should next hop to. This process 

continues until the datagram reaches the destination host's network, when it is delivered. 

Next hop routing makes IP powerful. On each step of the journey to any other host, a 

router only needs to know where the next step for the datagram is. Without this concept, 

each device and router would need to know what path to take to every other host on the 

internet, which would be impractical [4]. 

 

3.2.4 IP Routes and Routing Tables  

Routers are responsible for forwarding traffic on an IP network. Each router 

accepts datagrams from a variety of sources, examines the IP of the destination and 

decides what the next hop is that the datagram needs to take to get it that much closer to 

its final destination. This is done by the fact that each router maintains a set of 

information that provides a mapping between different network IDs and the other routers 

to which it is connected. This information is contained in a data structure normally called 

a routing table. Each entry in the table, unsurprisingly called a routing entry, provides 

information about one network. Each time a datagram is received the router checks its 

destination IP address against the routing entries in its table to decide where to send the 

datagram, and then sends it on its next hop [1]. 

 

3.3 Internet Protocol Version 6 (IPv6) / IP Next Generation (IPng)  
 

Since 1981, TCP/IP has been built on version 4 of the Internet Protocol. IPv4 has 

done its job admirably. At the same time, it has been apparent for many years that certain 

limitations in this vulnerable protocol would hold back the future growth of both Internet 

size and services if not addressed. Due to the key role that IP plays, changing it is no 

simple feat. It means a substantial modification to the way that nearly everything in 

TCP/IP operates. For the last several years, development of a new version of IP has been 

underway, officially called Internet Protocol version 6 (IPv6) and also sometimes referred 
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to as IP Next Generation or IPng. IPv6 is poised to take over from IPv4, and will be the 

basis for the Internet of the future [6]. 

 

3.3.1 Design Goals of IPv6 

The problem of addressing was the main motivation for creating IPv6. 

Unfortunately, this has caused many people to think that the address space expansion is 

the only change made in IP, which is not true. Since making a change to IP is such a big 

deal, it's something done rarely. It made sense to correct not just the addressing issue but 

to update the protocol in a number of other respects as well, to ensure its viability. In fact, 

even the addressing changes in IPv6 go far beyond just adding more bits to IP address 

fields. Some of the most important goals in designing IPv6 include [1]: 

• Larger Address Space: IPv6 had to provide more addresses for the growing 

Internet. This is done by 128-bits address space. 

• Better Management of Address Space: It was desired that IPv6 not only include 

more addresses, but a more capable way of dividing the address space and using 

the bits in each address.  

• Easier TCP/IP Administration: The designers of IPv6 hoped to resolve some of 

the current labor intensive requirements of IPv4, such as the need to configure IP 

addresses.  

• Modern Design for Routing: In contrast to IPv4, which was designed before we 

all had any idea what the modern Internet would be like, IPv6 was created 

specifically for efficient routing in our current Internet, and with the flexibility for 

the future.  

• Better Support for Multicasting: Multicasting was an option under IPv4 from the 

start, but support for it has been slow in coming.  

• Better Support for Security: IPv4 was designed at a time when security wasn't 

much of an issue, because there were a relatively small number of networks on 

the internet, and their administrators often knew each other. Today, security on 

the public Internet is a big issue, and the future success of the Internet requires 

that security concerns be resolved.  
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• Better Support for Mobility: When IPv4 was created, there really was no concept 

of mobile IP devices. The problems associated with computers that move between 

networks led to the need for Mobile IP. IPv6 builds on Mobile IP and provides 

mobility support within IP itself.  

 

3.3.2 Major Changes and Additions in IPv6  

Primary motivator for creating a new version of IP was to fix the problems with 

addressing under IPv4. But numerous other design goals existed for the new protocol as 

well. Once the decision was made to take the significant step of creating a new version of 

a protocol as important as IP, it made sense to use the opportunity to make as many 

improvements as possible. The following list provides a summary of the most important 

changes between IPv4 and IPv6, showing some of the ways that the IPv6 met the design 

goals for the new protocol [6]: 

1. Larger Address Space: IPv6 addresses are 128 bits long instead of 32 bits. This 

expands the address space.  

2. Hierarchical Address Space: One reason why the IPv6 address size was 

expanded so much was to allow it to be hierarchically divided to provide a large 

number of each of many classes of addresses.  

3. Hierarchical Assignment of Unicast Addresses: A special global unicast address 

format was created to allow addresses to be easily allocated across the entire 

Internet.  

4. Better Support for Non-Unicast Addressing: Support for multicasting is 

improved, and support is added for a new type of addressing: anycast addressing. 

This new kind of addressing basically is to deliver this message to the easiest 

reach member of this group, and potentially enables new types of messaging 

functionality.  

5. Auto Configuration and Renumbering: A provision is included to allow easier 

auto configuration of hosts and renumbering of the IP addresses in networks and 

subnetworks as needed. A technique also exists for renumbering router addresses.  

6. New Datagram Format: The IP datagram format has been redefined and given 

new capabilities. The main header of each IP datagram has been streamlined, and 
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support added for easily extending the header for datagrams requiring more 

control information.  

7. Support for Quality of Service: IPv6 datagrams include QoS features, allowing 

better support for multimedia and other applications requiring quality of service.  

8. Security Support: Security support is designed into IPv6 using the authentication 

and encryption extension headers and other features.  

9. Updated Fragmentation and Reassembly Procedures: The way that 

fragmentation and reassembly of datagrams works has been changed in IPv6, to 

improve efficiency of routing and better reflect the realities of today's networks. 

10.  Modernized Routing Support: The IPv6 protocol is designed to support modern 

routing systems, and to allow expansion as the Internet grows.  

11. Transition Capabilities: Since it was recognized from the start that going from 

IPv4 to IPv6 is a big move, support for the IPv4/IPv6 transition has been provided 

in numerous areas. This includes a plan for interoperating IPv4 and IPv6 

networks, mapping between IPv4 and IPv6 addresses etc.  

 

3.3.3 IPv4-IPv6 Transition Methods 

Due to the time that change takes, IETF has been working on specific provisions 

to allow a smooth transition from version 4 to version 6, and hardware and software 

interoperability solutions to let newer IPv6 devices access IPv4 hosts. A technique was 

included in IPv6 to allow administrators to embed IPv4 addresses within IPv6 addresses. 

Special methods are defined to handle interoperability, including [1]: 

Dual Stack Devices: Routers and some other devices may be programmed with both 

IPv4 and IPv6 implementations to allow them to communicate with both types of 

hosts.  

IPv4/IPv6 Translation: Dual stack devices may be designed to accept requests from 

IPv6 hosts, convert them to IPv4 datagrams, and send the datagrams to the IPv4 

destination and then process the return datagrams similarly.  

IPv4 Tunneling of IPv6: IPv6 devices that don't have a path between them consisting 

entirely of IPv6-capable routers may be able to communicate by encapsulating IPv6 

datagrams within IPv4. In essence, they would be using IPv6 on top of IPv4; two 
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network layers. The encapsulated IPv4 datagrams would travel across conventional 

IPv4 routers.  

 

3.3.4 IPv6 Address Types 

One important change in the addressing model of IPv6 is the address types 

supported. IPv6 also supports three address types, but with some changes [6]: 

Unicast Addresses: These are standard unicast addresses as in IPv4, one per host 

interface.  

Multicast Addresses: These are addresses that represent various groups of IP devices: 

a message sent to a multicast address goes to all devices in the group. IPv6 includes 

much better multicast features and many more multicast addresses than IPv4. Since 

multicast under IPv4 was hampered in large part due to lack of support of the feature 

by many hardware devices, support for multicasting is a required, not optional, part of 

IPv6.  

Anycast Addresses: Anycast addressing is used when a message must be sent to any 

member of a group, but does not need to be sent to them all. Usually the member of 

the group that is easiest to reach will be sent the message. One common example of 

how anycast addressing could be used is in load sharing amongst a group of routers in 

an organization.  

 

3.3.5 IPv6 Address Size  

In IPv4, IP addresses are 32 bits long; these are usually grouped into four octets of 

eight bits each. The theoretical IPv4 address space is 232, or 4,294,967,296 addresses. To 

increase this address space we simply increase the size of addresses; each extra bit we 

give to the address size doubles the address space. Based on this, some folks expected the 

IPv6 address size to increase from 32 to 48 bits, or perhaps 64 bits. Either of these 

numbers would have given a rather large number of addresses. However, IPv6 addressing 

doesn't use either of these figures; instead, the IP address size jumps all the way to 128 

bits, or sixteen 8-bit octets/bytes. This represents a truly remarkable increase in the 

address size, which surprised a lot of people [5]. 
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3.3.6 IPv6 General Datagram Structure 

IPv6 datagrams now includes a main header format and zero or more extension 

headers. The overall structure therefore is like [6]. 

 

Main Header 

(40 Bytes) 

Extension Header 

(Variable) 

Data 

(Variable) 

Figure 3.2: IPv6 General Datagram Structure 

 

3.3.7 Main Header Format  

The IPv6 main header is required for every datagram. It contains addressing and 

control information that are used to manage the processing and routing of the datagram. 

The main header format of IPv6 datagrams is described below [1]. 

 

Version Traffic Class Flow Label 

Pay Load Length Next Header Hop Limit 

Source Address (128 Bits) 

Destination Address (128 Bits) 

Figure 3.3: IPv6 Main Header Format 

 

Version (4 bits): Identifies the version of IP used to generate the datagram. This 

field is used the same way as in IPv4, except that it carries the value 6 (0110 

binary). 

Traffic Class (1 byte): This field replaces the Type of Service (TOS) field in the 

IPv4 header 

Flow Label (20 bits): This large field was created to provide additional support 

for real-time datagram delivery and quality of service features. The concept of a 

flow is defined as a sequence of datagrams sent from a source device to one or 

more destination devices. A unique flow label is used to identify all the datagrams 

in a particular flow, so that routers between the source and destination all handle 

them the same way, to help ensure uniformity in how the datagrams in the flow 

are delivered. For example, if a video stream is being sent across an IP 
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internetwork, the datagrams containing the stream could be identified with a flow 

label to ensure that they are delivered with minimal latency. Not all devices and 

routers may support flow label handling, and use of the field by a source device is 

entirely optional.  

Payload Length (2 bytes): This field replaces the Total Length field from the 

IPv4 header, but it is used differently. Rather than measuring the length of the 

whole datagram, it only contains the number of bytes of the payload. However, if 

extension headers are included, their length is counted here as well. In simpler 

terms, this field measures the length of the datagram less the 40 bytes of the main 

header itself. 

Next Header (1 byte): This field replaces the Protocol field and has two uses. 

When a datagram has extension headers, this field specifies the identity of the first 

extension header, which is the next header in the datagram. When a datagram has 

just this main header and no extension headers, it serves the same purpose as the 

old IPv4 Protocol field and has the same values, though new numbers are used for 

IPv6 versions of common protocols. In this case the next header is the header of 

the upper layer message the IPv6 datagram is carrying. 

Hop Limit (1 byte): This replaces the Time to Live (TTL) field in the IPv4 

header; its name better reflects the way that TTL is used in modern networks, 

since TTL is really used to count hops, not time. 

Source Address (16 bytes): The 128-bit IP address of the originator of the 

datagram. As with IPv4, this is always the device that originally sent the 

datagram. 

Destination Address (16 bytes): The 128-bit IP address of the intended recipient 

of the datagram; unicast, anycast or multicast. Again, even though devices such as 

routers may be the intermediate targets of the datagram, this field is always for the 

ultimate destination. 

 

3.3.8 IPv6 Extension Header Types  

IPv6 options supplement extension headers, in fact, they are actually implemented 

as extension headers. There are two different ones used to encode options. These two 
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headers only differ in terms of how the options they contain are to be processed by 

devices otherwise, they are formatted the same and used in the same way. 

The two extension header types are [1]: 

Destination Options: Contains options that are intended only for the ultimate 

destination of the datagram and perhaps a set of routers specified in a Routing header. 

Hop-By-Hop Options: Contains options that carry information for every device 

(router) between the source and destination. 

 

3.3.9 IPv6 Datagram Delivery and Routing  

IP functions such as addressing, datagram encapsulation and if necessary, 

fragmentation and reassembly, all lead up to the ultimate objective of the protocol, the 

actual delivery of datagrams from a source device to one or more destination devices. 

Most of the changes in routing in IPv6 are directly related to changes in other areas of the 

protocol. Some of the main issues of note related to routing and routers in IPv6 include 

the following [6]: 

Hierarchical Routing and Aggregation: One of the goals of the structure used for 

organizing unicast addresses was to improve routing. The unicast addressing format is 

designed to provide a better match between addresses and Internet topology, and to 

facilitate route aggregation. Classless addressing in IPv4 was an improvement, but 

lacked any formal mechanism for creating a scalable hierarchy.  

Scoped Local Addresses: Local-use addresses including site-local and link-local are 

defined in IPv6, and routers must be able to recognize them. They must route them or 

not route them when appropriate. Multicast addresses also have various levels of 

scope.  

Multicast and Anycast Routing: Multicast is standard in IPv6, not optional as in 

IPv4, so routers must support it. Anycast addressing is a new type of addressing in 

IPv6.  

More Support Functions: Capabilities must be added to routers to support new 

features in IPv6.  

New Routing Protocols: Routing protocols such as RIP must be updated to support 

IPv6.  
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Transition Issues: Routers play a major role in supporting the transition from IPv4 to 

IPv6. They will be responsible for connecting together IPv6 and performing 

translation to allow IPv4 and IPv6 devices to communicate with each other during the 

multi-year migration to the new protocol.  
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 DoS attacks can be classified as either flooding attacks or logic attacks [1]. 

However a basic mechanism in all DoS attacks to hide the location of an attacker is IP 

spoofing which means sending packets with a false source IP address. It is possible to 

carry out DoS attacks without source address spoofing if the attacker has compromised 

enough hosts, or if a chain of compromised hosts is used.  

 

4.1.1 Flooding DoS Attacks  

 A flooding DoS attack is based on brute force. Real-looking but unnecessary data 

is sent as much as possible to a victim. As a result, network bandwidth is wasted, disk 

space is filled with unnecessary data, or processing power is spent for unuseful purposes 

[2]. Flooding DoS attacks are carried out as either direct or reflector attacks [3]. Example 

of flooding attack is TCP SYN flooding.  

 

4.1.2 Logic DoS Attacks 

 The objective of logic DoS attacks is to build a small number of specific packets 

exploiting vulnerabilities which cause the victim to do abnormal things. The packets are 

normally sent directly to a victim because special knowledge about vulnerability is 

required for building the attack packets [2]. Example of logic attack is the LAND attack.  

  

4.2 Types of DoS/DDoS Attacks  

 
4.2.1 TCP SYN Flooding Attacks 

 This attack exploits the three-way handshake mechanism of connection 

establishment at the transport layer. Basically, whenever a client wants to make a 

connection to a server it sends a TCP packet with the SYN flag set (request to open a 

connection). The server responds with a TCP packet with both the SYN and ACK flags 

set. The client completes the connection by sending a TCP packet with the ACK flag set. 

However, in TCP SYN flooding attacks, TCP packets with SYN flag set are sent at 

maximum rate to the victim with spoofed source addresses (non-existing host address). 

The server responds but it would never receive ACK packets. These half open 

connections consume some of the resources at the server side and since the SYN packets 
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are sent at maximum rate, all the connections at the server side are reserved for 

unresolved clients. Thus legitimate users are denied connections.  

 A solution for TCP SYN flooding attack is to use SCTP (Stream Control 

Transmission Protocol) at the transport layer instead of TCP. SCTP allocates resources 

after the connection is complete by using a feature called cookie [4].  

 

4.2.2 ICMP Echo Flooding 

 ICMP (Internet Control Message Protocol) is a network layer protocol for the 

exchange of control packets between a router and a host or between hosts. In this type of 

attack the victim is forced to handle large number of ICMP Echo packets (ping packets). 

The Echo packets require the recipient to respond with an echo-reply to check that 

communication is possible between entities [5]. The attacker floods the victim with so 

much ping traffic that legitimate traffic fails to reach the system. Sending a ping packet of 

size greater than 64Kbytes can crash the target system and is known as Ping of Death.  

  

4.2.3 Application Layer Attacks 

 Application layer attacks refer to all the attacks performed at the layer 7 of the 

OSI model. This is the bulk of all attacks on the Internet today, and the vulnerabilities 

that enable these attacks represent the source of most of the insecurities in today’s 

networks. General attacks such as buffer overflows, Web application attacks, and viruses 

and worms all fall into this category.  

 

4.2.4 LAND Attack  

 It involves sending connection opening TCP packet (SYN flag set) to the victim. 

The source and destination address fields of this packet (TCP packets are encapsulated in 

IP datagrams) contain the IP address of the target system. The victim eventually crashes 

by replying to itself continuously. 

 

4.2.5 Broadcast Amplification Attacks 

 Broadcast amplification attacks, commonly referred to as smurf attacks are a DoS 

attack tool that take advantage of the ability to send an echo-request message with a 
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destination address of a subnet broadcast and a spoofed source address, using the victim’s 

IP. All end hosts on the subnet respond to the spoofed source address and flood the 

victim with echo-reply messages [6]. This attack can be mitigated if IP directed 

broadcasts are disabled on the router. The command ‘no ip directed broadcasts’ is the 

default for Cisco IOS Software version 12.0 and later.   

 

4.2.6 Teardrop Attack 

 The Teardrop attack involves sending IP fragments with overlapping oversized 

payloads to the target machine. A bug in the TCP/IP fragmentation reassembly code 

causes the fragments to be improperly handled, crashing the operating system as a result 

of this [7].  

 

4.2.7 UDP Data Flooding 

Instead of directly overloading the victim, it may be possible to cause the victim 

or a machine on the same subnet as the victim to overload itself.  

An example of such an attack is UDP data flooding, where the attacker spoofs the 

source address on a packet sent to the victim's UDP echo port.  The source address is that 

of another machine that is running a UDP chargen server (a chargen server sends a 

character pattern back to the originating source).  The result is that the two machines 

bounce packets back and forth as fast as they can, overloading either the network 

between them or one of the end-systems itself [6].  

 

4.2.8 DoS Attacks on Routers 

Many of the denial-of-service attacks that can be launched against end-systems 

can also be launched against the control processor of an IP router, for example, by 

flooding the command and control access ports.  In case of a router, these attacks may 

cause the router to stall, or may cause the router to cease processing routing packets. 

Even if the router does not stop servicing routing packets, it may become sufficiently 

slow that routing protocols time out.  In any of these circumstances, the consequence of 

routing failure is not only that the router ceases to forward traffic, but also that it causes 

routing protocol churn that may have further side effects [6].  
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4.2.9 Distributed Denial of Service (DDoS) Attack  

 An attempt to prevent or degrade the availability of resources by using multiple 

source hosts at the same time to send attack traffic. In the context of DDoS attack, an 

agent (or daemon or zombie or bot) is defined as a compromised host used to send 

attack traffic in a DoS attack. A master (or handler) is defined as a compromised host 

used to control operation of a large set of agents. A DDoS network is defined as a 

hierarchically structured set of masters and agents to make it easier to control a DDoS 

attacks by an attacker [2]. DDoS attacks can be classified as either direct or reflector 

attacks.  

 

4.2.10 Direct DDoS Attacks 

 In direct DDoS attack, the attacker is able to implant zombie software on a 

number of hosts distributed throughout the internet. Often the DDoS attack involves two 

levels of zombie machines: master zombies and slave zombies. The hosts of both the 

machines have been infected with malicious software. The attacker coordinates and 

triggers the master zombies (handlers), which in turn coordinate and trigger the slave 

zombies (agents). The use of two levels of zombies makes it more difficult to trace the 

attack back to its source and provides for a more resilient network of attackers [5].  
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Figure 4.1: Direct DDoS Attack 

4.2.11 Reflector DDoS Attacks  

 In reflector attacks, packets with the victim’s address in the source IP address 

field are sent by slave zombies (agents) to innocent third parties (uninfected machines 

like web servers, DNS server etc), which in turn will send the reply to the victim (flood 

the victim). Reflector attacks thus have at least two victims at the same time [2]. 

Reflector attacks can be more damaging since they involve more machines and thus more 

traffic and they are more difficult to trace as well.  
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Figure 4.2: Reflector DDoS Attack 
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5.1 IP Traceback 
 

 IP traceback is a name given to any method for reliably determining the origin of 

a packet on the Internet. The datagram nature of the Internet makes it difficult to 

determine the originating host of a packet, the source id supplied in an IP packet can be 

falsified (IP spoofing) allowing for Denial of Service attacks (DoS) or one-way attacks 

where the response from the victim host is so well known that return packets need not be 

received to continue the attack. The problem of finding the source of a packet is called 

the IP traceback problem. IP Traceback is a critical ability for identifying sources of 

attacks and instituting protection measures for the Internet.  

 In DoS/DDoS attack, attacker uses fake source IP addresses to make tracing and 

stopping of DoS difficult. This technique is called IP spoofing. This technique involves 

the manipulation of the source IP address in the IP header of a transmitted packet. This 

gives the attacker a form of anonymity. It is difficult to solve problem of IP Spoofing 

because of lack of security features in TCP/IP specifications. Ingress filtering, Use of 

cryptographic authentication , IP trace back are some of the approaches used to handle 

forged IP source addresses [1]. The purpose of IP traceback is to identify the true IP 

address of a host originating attack packets. IP trace back is vital for quickly restoring 

normal network functionality and preventing reoccurrences [2]. 

 

5.1.1 Existing IP Traceback Techniques 

There is no intrinsic support to identify the real sources of IP packets in the 

Internet architecture, so different techniques have been proposed to provide traceback 

capability. Existing trace back schemes can be roughly categorized into three distinct 

categories viz. traditional, marking and logging. In traditional scheme, victim develops an 

attack signature, consisting of some data common and unique to the attack traffic. A 

query including the attack signature is then sent hop-by-hop to each router along the path. 

Examples of this type of technique are input debugging and controlled flooding [3]. In 

packet logging, the IP packet is logged at each router through which it passes. Routers are 

queried in order to reconstruct the network path. SPIE (Source Path Isolation Engine) is 

an example of this type of technique [4].  In packet marking [5], the router marks IP 
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packets with its identification information. The network path can be reconstructed by 

combining packets containing marks. The marking information may be inscribed in the 

same attack packets called inbound marking or extra ICMP packets called outbound 

marking. Current traceback schemes based on marking include variants of PPM 

(Probabilistic Packet Marking), ATA (Algebraic Based Traceback Approach) [6], DPM 

(Deterministic Packet Marking) [7], and schemes that use ICMP (Internet Control 

Message) messages, such as iTrace [8]. 

 

5.2 Classification of IP Traceback Techniques 

 
Traditional Approach 

1. Input Debugging 

2. Controlled Flooding 

Logging 

1. SPIE (Source Path Isolation Engine) 

Packet Marking 

1. Probabilistic Packet Marking 

2. Deterministic Packet Marking 

3. ICMP (Internet Control Message Protocol) Traceback 

4. ATA (Algebraic Based Traceback Approach) 

 

5.3 Traditional Approach 

 
Traditional approach also referred as link-testing methods or hop-by-hop tracing 

work by testing network links between routers to determine the origin of the attacker’s 

traffic.  
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5.3.1 Input Debugging  

Input debugging start from the router closest to the victim and interactively tests 

its incoming (upstream) links to determine which one carries the attack traffic. This 

process repeats recursively on the upstream routers until reaching the traffic’s source.  

 

5.3.2 Controlled Flooding  

Controlled flooding works by generating a burst of network traffic from the 

victim’s network to the upstream network segments and observing how this intentionally 

generated flood affects the attack traffic’s intensity. From changes in the attack traffic’s 

frequency and intensity, the victim can deduce the incoming network link on the 

upstream router and repeat the same process on the router one level above. Traditional 

approach is not very efficient as it requires a lot of human effort and other network 

providers’ support. For a successful trace, attack must last far a long enough duration. 

Compatibility with existing protocols, routers and network infrastructure is an advantage 

of this method [9].  

 

 
Figure 5.1: Link-testing Traceback 
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Advantages of Traditional Approach 

• Both controlled flooding and input debugging are compatible with existing 

protocols. 

• Both are compatible with existing routers and network infrastructure as well. 

• Both support incremental implementation [9].  

 

Disadvantages of Traditional Approach 

• ISP cooperation is required for both controlled flooding and input debugging. 

• Controlled flooding serves as a DoS attack. 

• Both techniques are less suitable for DDoS attacks. 

• Attack must last long enough for a successful traceback in both the cases [9].  

 

5.4 Logging 

 
 The main idea of IP traceback approach based on packet logging is to log packets 

at each router through which they pass.  

 

 
Figure 5.2: Logging approach 

 

5.4.1 SPIE (Source Path Isolation Engine)  

SPIE stores packet digests, instead of packets themselves, in a space-efficient data 

structure, to decrease the required storage space. For each arriving packet, the router uses 

the first 24 invariant byte of the packet (20-byte IP header with 4 bytes masked out plus 
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the first 8 bytes of payload) as input to the digesting function. The 32-bit packet digest is 

stored into the time-stamped digest table. The digest table is paged out before it becomes 

saturated. Digest tables are archived for one minute for potential traceback operation. 

During the traceback process, routers are queried in the reverse-path flooding (RPF) 

manner and the digest tables at queried routers are examined to reconstruct the network 

path [10]. Logging approach is resource-intensive in terms of processing and storage 

requirements. This scheme is not scalable. It is difficult to extend this scheme to complete 

Internet. Sharing of the logging information can lead to logistic and legal issues. Using 

Hash based IP traceback can reduce the storage overhead significantly [7].  

 
Advantages of Logging 

• This method is compatible with existing protocols. 

• This method is compatible with existing routers and network infrastructure.  

• It allows post-attack analysis. 

• Insignificant network traffic overhead. 

• Can trace a single packet [9]. 

 

Disadvantages of Logging 

• This technique is resource-intensive in terms of processing and storage 

requirements. 

• The sharing of the logging information among several ISPs leads to logistic and 

legal issues. 

• It is less suitable for DDoS attacks [9]. 

 

5.5 Packet Marking 

 
The basic idea of IP traceback approach based on packet marking is that the router 

marks packets with its identification information as they pass through that router.  
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Figure 5.3: Packet marking 

 

5.5.1 PPM (Probabilistic Packet Marking)  

In Probabilistic Packet Marking the mark overloads a rarely used field in IP 

packet header, i.e., 16-bit IP identification field. The identification of a router could be 

32-bit IP address, hash value of IP address or uniquely assigned number. In the last two 

cases, the length of identification information is variable and could be less than 16 bits. 

Since the marking space in packet header is too small to record the entire path, routers 

mark packets with some probability so that each marked packet carries the information of 

one node in the path. In addition, based on the length of router identification and the 

implementation of marking procedure, the router may only write part of its identification 

information into the marking space. While each marked packet represents only a small 

portion of the path it has traversed, the whole network path can be reconstructed by 

combining a modest number of such packets [11].  

The PPM approach does not incur any storage overhead at routers and the marking 

procedure (a write and checksum update) can be easily and efficiently executed at current 

routers. But due to its probabilistic nature, it can only trace the traffic that consists of a 

large volume of packets. However, this method increases the packet’s length at each 

router hop and can lead to additional fragmentation [9].  
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5.5.2 DPM (Deterministic Packet Marking)  

In DPM only ingress edge routers perform the marking. All other routers are 

exempted from the marking task. Basic DPM uses the 16-bit IP identification field of the 

IP header and one reserved bit to record the marking information. The IP address of every 

ingress edge router is split into two segments with 16 bits each. One segment is randomly 

selected when a packet traverses this router. The idea is that the victim is capable of 

recovering the whole IP address of an ingress edge router once it obtains both segments 

from the same router. For the victim to figure out which portion of the IP address the 

current packet carries, one bit is used as a flag. Therefore, the marking information 

comprises two parts, the 16-bit partial IP address of the edge router and a 1-bit flag [7].  

There are two main differences between DPM and PPM. DPM only marks the 

first ingress edge router, while PPM marks all routers along an attack path. PPM marks 

probabilistically, while DPM marks every packet at the ingress edge router. The task of 

ingress address reconstruction in DPM is much simpler than the task of path 

reconstruction in PPM.  

 

Advantages of Packet Marking 

• This technique can be deployed incrementally and appears to be low cost. 

• It can work with existing routers and network infrastructure. 

• It is effective against DDoS attacks. 

• ISP cooperation not required. 

• It allows post-attack analysis [9]. 

 

Disadvantages of Packet Marking 

• It requires modifications to the protocol. 

• PPM can produce false positive paths (that are not part of the attack path). 

• DPM cannot handle fragmentation.  

 

5.5.3 ICMP (Internet Control Message Protocol)  

In ICMP traceback method, iTrace, each router selects one packet per 20,000 

packets and then generates an ICMP message. The ICMP message has the same 
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destination IP address as the traced packet. The ICMP message also contains the IP 

header of the traced packet, and the IP addresses of the incoming interface and the 

outgoing interface of the current router. As long as the victim receives sufficient ICMP 

messages, it may recover the whole attack path.  

The marking procedure of iTrace is very similar to PPM. Therefore, it shares 

similar pros and cons. Unlike PPM, ICMP traceback belongs to outbound marking, 

because of which ICMP traceback requires additional bandwidth to convey the marking 

information [7].  

 

 
Figure 5.4: ICMP traceback 

 

Advantages of ICMP 

• This method is compatible with existing protocols. 

• It can support incremental implementation. 

• It allows post-attack analysis. 

• If implemented with encryption and key distribution schemes presents a very 

promising and expandable technology for of dealing with denial-of-service 

attacks  

• ISP cooperation is not required 

• Compatible with existing routers and network infrastructure [9]. 

 

Disadvantages of ICMP 

• ICMP traffic is increasingly differentiated and may itself be filtered in a network 

under attack. 
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• The ICMP Traceback message relies on an input debugging capability (i.e., the 

ability to associate a packet with the input port and/or MAC address on which it 

arrived) that is not available in some router architectures 

• If only some of the routers participate it seems difficult to positively “connect” 

traceback messages from participating routers separated by a nonparticipating 

router. 

• It requires a key distribution infrastructure to deal with the problem of attackers 

sending false ICMP Traceback messages [12]. 

 

5.5.4 ATA (Algebraic Based Traceback Approach)  

ATA is a modified PPM method that uses algebraic techniques from the fields of 

coding theory and machine learning to encode and decode path information as points on 

polynomials. The encoded path information is stored in the Fragment ID field. At the 

victim side, algebraic methods are used to reconstruct the polynomials [13].  

 

5.6 Challenges for IP Traceback 

 
IP traceback has several limitations, such as the problem with tracing beyond 

corporate firewalls. To accomplish IP traceback, we need to reach the host where the 

attack originated. It is difficult; however, to trace packets through firewalls into corporate 

intranets, the last-traced IP address might be the firewall’s address. Knowing the IP 

address of the organization’s network entry point, however, allows us to obtain 

information about the organization where the attacker’s host is located, such as the 

organization’s name and the network administrator’s e-mail address. If we can identify 

the organization from which the attack originated, the organization can often identify the 

user who launched the attack. Another limitation relates to the deployment of traceback 

systems. Most traceback techniques require altering the network, including adding router 

functions and changing packets. To promote traceback approaches, we need to remove 

any drawbacks to implementing them. Moreover, even if IP traceback reveals an attack’s 

source, the source itself might have been used as a stepping-stone in the attack. IP 

traceback methods cannot identify the ultimate source behind the stepping-stone; 
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however, techniques to trace attacks exploiting stepping-stones are under study. Some 

operational issues must also be solved before IP traceback can be widely deployed. To 

trace an attack packet through different networks, for example, there must be a common 

policy for traceback. We also need guidelines for dealing with traceback results to avoid 

infringing on privacy. Furthermore, we need to consider how to use information about an 

attack source identified by IP traceback [14].  

 

Table 5.1: Comparison of existing traceback methods 

 Management 

overhead 

Network 

overhead

Router 

overhead 

Logic attack 

detection 
Nature 

Input 

debugging 
High Low High Poor Reactive 

Controlled 

flooding 
Low High Low Poor Reactive 

Logging High Low High Good Proactive 

PPM Low Low Low Poor Proactive 

DPM Low Low Low Excellent Proactive 

ICMP 

traceback 
Low Low Low Poor Proactive 
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6.1 A Hybrid IP Traceback Technique Based on TTL Identification 

 
 We propose a new IP traceback technique which is a variant of packet marking 

and is based on TTL identification. This technique was initially proposed for IPv4 

networks. 

Different IP traceback techniques have been proposed so far. Some of them are 

compatible with existing infrastructure and some require modification to it, but the 

effectiveness of any traceback technique can be measured by the following 

characteristics.  

1. Capability of tracing any type of DoS attack. 

2. Minimum overhead in terms of storage requirements. 

3. Minimum processing requirements on the routers. 

4. Least complexity in path reconstruction algorithm (if any). 

5. Faster convergence. 

 

This hybrid technique was proposed by taking into account all the above 

mentioned characteristics.  

The aim of all the traceback techniques is to identify the sources of attacking 

traffic but path reconstruction algorithms actually reveal the identity of first router on the 

path. A better approach would be to find an algorithm that reveals the identity of first 

router without requiring the participation of all the routers on the path [1].  

Since the attacker can forge any field in the IP header, he can’t falsify the Time to 

live (TTL) field. The TTL is an 8-bit field that determines the maximum number of hops 

a datagram can traverse. Each router decrements the TTL value by 1, after forwarding the 

datagram. The problem of determining the first router on the path can be solved by using 

this field. 

The TTL field is different for different operating systems and is not universally 

selected, but all the packets sent by a particular operating system will have the same 

initial TTL value [2]. Default TTL values for different operating systems are shown in 

Table 1.  
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 We propose to create a TTL vs. operating system (OS) table and store it on the 

routers. The router should read the TTL value of all the packets passing through it. If the 

TTL value matches any entry of the table, the router should mark the packet with its 

identification. This router would obviously be of the subnet from which the packets 

originated. All the other routers on the path cannot mark the packet, since the TTL value 

would not match any entry of the TTL vs. OS table. There is one exception to this. 

Consider a packet originating with a TTL of 64. It would be marked by its subnet router. 

But after four hops, its TTL would be 60. Since 60 is an entry of stored table, the packet 

would again be marked. If this packet was sent by an attacker, traceback would lead to a 

subnet four hops away from the subnet from which the attack originated. To overcome 

this problem, we propose to use the reserved flag in IP header (there are 3 flags in IP 

header, 2 are used with fragmentation and one is reserved). The first router on the path 

should set the flag to ‘1’ after marking the packet. All the other routers on the path should 

read both the TTL and reserved flag. The packet should only be marked if a match of 

TTL is found and the value of reserved flag is ‘0’. It is however not possible that a packet 

originating with a TTL of 255 would reach a router with its TTL set to 128 since 95% of 

the traffic in the internet reaches its destination before 30 hops. The storage requirements 

on the routers can be minimized by having only a 5 entry TTL table (since most of the 

values in table 6.1 are occurring more than once).  

 The proposed marking scenario obviously has the first two characteristics of an 

effective IP traceback technique. We can trace any type of DoS attack because each and 

every packet is marked by its subnet router. It is possible to trace DoS attacks which 

require only a single packet, which may not be possible with other marking techniques 

like PPM and iTrace.  

   

Table 6.1: Default initial TTL values for different operating systems 

OS Version Platform TTL value 

Windows 9x/NT Intel 32 

Windows 9x/NT Intel 128 

Windows 2000 Intel 128 
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Digital Unix 4.0 Alpha 60 

Unisys x Mainframe 64 

Linux 2.2.x Intel 64 

FTX (UNIX) 3.3 STRATUS 64 

SCO R5 Compaq 64 

Netware 4.11 Intel 128 

AIX 4.3.x IBM / RS6000 60 

AIX 4.2.x IBM / RS6000 60 

Cisco 11.2 7507 60 

Cisco 12.0 2514 255 

IRIX 6.x SGI 60 

Free BSD 3.x Intel 64 

Open BSD 2.x Intel 64 

Solaris 8 Intel / Sparc 64 

Solaris 2.x Intel / Sparc 255 

 
The second challenge is obviously to store the marking information. The question 

arises where to store the marking information in the IP header. Basic DPM [3] uses the 

16-bit ‘Identification’ field of the IP header. However, choosing Identification field may 

not be a good idea because it is used for fragmentation purposes. Fragmented traffic 

constitutes between 0.25% and 0.5% of the total IP traffic [4]. Though the amount of 

fragmented traffic is small, it does exist and for the worst case scenario, Identification 

field should be reserved only for fragmentation purposes. Carrying marking information 

in outbound packets (iTrace) would obviously increase router and network overhead and 

would require a new and complex protocol to be implemented as well.  

We propose to use the Record Route (RR) optional field in the IPv4 header. The 

IP address of the router would be stored in the first 4 bytes of route data in RR field. Thus 

the router appends the marking information with the packets. If the RR field is already 

present, the router should overwrite the first 4 bytes of route data in it. Thus even if the 

attacker forges the RR field with wrong IP addresses or unnecessary data, it would still be 
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overwritten with the true IP address of the router. The minimum required length of RR 

field is 7 bytes (4 bytes for route data, 1 byte for option type code, 1 byte for option 

length and 1 byte for pointer into the route data). The remaining space in the optional 

field can be used for other options like ‘Strict Source Route’, ‘Loose Source Route’, 

‘Stream Identifier’ etc, if required. 

 

 
Figure 6.1: Record Route Option 

 

  
Figure 6.2: Algorithm for the proposed IP traceback technique 
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The problem of source address spoofing can be solved by a technique called 

Ingress Filtering [5], in which the router discards the incoming packets with invalid 

source IP address. A serious limitation of this technique arises when the attacker forges 

the address to the one that belongs to the same network as the attacker’s host. Ingress 

filtering is commonly done at the border router. So this technique is not effective for 

internal attacks.  

 We propose Egress Filtering at the subnet router, in which the router discards the 

outgoing packets with illegitimate source IP address. The legitimacy of source IP address 

can be checked from the network id part of the 32-bit IP address. An effective IP 

traceback technique can result by combining this filtering technique with the proposed 

packet marking (based on TTL identification) technique, and thus the name ‘Hybrid’. The 

algorithm for this hybrid technique is shown in figure 6.2.  

The packet is first checked for spoofing and is discarded if the source address is 

forged (doesn’t have a valid network id). If the source address has a valid network id, the 

packet is marked with router’s identity. It should be noted that spoofing attacks from the 

same subnet cannot be stopped because the router is checking only the network id of the 

IP address.  

This hybrid technique is significantly different from the basic DPM. The basic 

DPM needs an address construction algorithm since the 32-bit IP address is divided into 

two 16-bit IP addresses which are stored in alternate packets. This technique however 

doesn’t require any address reconstruction algorithm. Also, the Identification field is 

retained for fragmentation purposes. This technique doesn’t require a path reconstruction 

algorithm since only the first router on the path is participating in marking process. It 

provides faster convergence as well, since a single packet can provide the traceback 

capability at the victim side.  

As far as DDoS attacks are concerned, this technique can prevent reflector DDoS 

attacks; since the slave zombies cannot send spoofed packets to reflectors (spoofed 

packets would be discarded). This technique however can trace the direct DDoS attacks 

till slave zombies only. Once the slave zombies are identified, suitable measures can be 

taken to prevent reoccurrences of DDoS attacks using these compromised machines.  
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 This technique has the additional advantage of tracing the internal attacks in a 

corporation’s network (figure 6.3). This technique can trace beyond corporate firewall. 

 

 
Figure 6.3: Tracing internal attackers  

 
6.2 Performance Evaluation 
 

This hybrid technique was simulated in the Network Simulator (ns-2.31) [6] at 

network layer to measure the delay for marked traffic as compared to normal (unmarked) 

traffic. The simulator was running on an Intel based machine having 1.7 GHz processor 

and 512 MB of main memory. The internal files of ns-2.31 were modified to incorporate 

packet marking in it. The modified internal files along with the Tcl code are given in 

Appendix A. Appendix B contains a detailed tutorial on ns-2. The simulated scenario and 

simulated topology are shown in figures 6.4 and 6.5 respectively.  
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Figure 6.4: Simulated Scenario 

 
The size of the topology doesn’t matter because all the delay is incurred at the 

first router only. Traffic originated from node 7 and was destined for node 3. For this 

traffic, node 0 acts as the first router on the path. Traffic consisted of TCP packets of 

1040 bytes carrying FTP data. The comparison between marked and normal traffic is 

shown in figure 6.6. The additional time taken by marked traffic is just 0.8 milliseconds. 

Similar delay is also observed for traffic from node 13 to node 8 for which node 12 acts 

as the first router on the path.  

 

6.3 IPv6 Compatibility 
 

 IPv6 was proposed to overcome different problems of IPv4 like address depletion, 

lack of security features, lack of support for real-time audio and video etc. IPv6 addresses 

are 128 bits long as compared to 32 bit addresses of IPv4 [7].The Hop limit field in IPv6 

base header serves the same purpose as TTL field in case of IPv4. The length of base 

header is fixed at 40 bytes. However, to achieve greater functionality, extension headers 
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are used. Most of the extension headers are options in IPv4. In this section we describe, 

how our proposed technique would work with IPv6.  

 

 
Figure 6.5: Simulated topology 

 

 
Figure 6.6: Graph showing the delay for marked traffic as compared to normal traffic 

 

 The matching of Hop limit value with any entry of stored table (Hop limit vs. OS 

table in this case) will identify the first router on the path. This router should then mark 

the packet with its identification (128 bit IP address). Since Record Route option is not 
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implemented in IPv6, we propose to use ‘Destination Option’ extension header which is 

identified by a Next header value of 60. The Destination Option is used when the source 

needs to pass information to the destination only. Intermediate routers are not permitted 

to access this information.  

 The 128 bit Destination address field in IPv6 header is not necessarily the final 

destination. It contains the address of next hop when source routing is used. It means that 

the intermediate routers can have access to Destination Option field which is not desired. 

 This problem can be solved by placing the Destination Option extension header 

after the Routing header and before the upper layer header [7]. In this case only the final 

destination is allowed to process the Destination Option header.  

  The legitimacy of the source IP address, in this case can be checked from the 32-

bit subnet identifier portion of the 128-bit IP address. The packet is discarded if it doesn’t 

have a valid source IP address.  
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7.1 Internet Protocol Mobility Support (Mobile IP)  
 

 The Internet Protocol (IP) is the most successful network layer protocol in 

computing due to its strength, but it also has some weaknesses, most of which have 

become more important as networks have evolved over time. While mobile devices can 

certainly use IP, the way that devices are addressed and datagrams routed causes a 

problem when they are moved from one network to another. To support IP in a mobile 

environment, a new protocol called IP Mobility Support, or more simply Mobile IP was 

developed. 

IP addresses are divided into two portions, a network identifier (network ID) and 

a host identifier (host ID). The network ID specifies which network a host is on, and the 

host ID uniquely specifies hosts within a network. This structure is fundamental to 

datagram routing, because devices use the network ID portion of the destination address 

of a datagram to determine if the recipient is on a local network or a remote one, and 

routers use it to determine how to route the datagram. 

The tight binding of network identifier and host IP Address means that there are only two 

real options under conventional IP when a mobile device moves from one network to 

another: 

Change IP Address: We can change the IP address of the host to a new address that 

includes the network ID of the network to which it is moving.  

Decouple IP Routing From Address: We can change the way routing is done for the 

device, so that instead of router sending datagrams to it based on its network ID, they 

route based on its entire address [1].  

 

Unfortunately, they are both inefficient, often impractical, and neither is scalable, 

meaning, and practical when thousands or millions of devices try them, 

• Changing the IP address each time a device moves is time-consuming and 

normally requires manual intervention. In addition, the entire TCP/IP stack would 

need to be restarted, breaking any existing connections.  

• If we change the mobile device’s IP address, how do we communicate the change 

of IP to other devices on the Internet. These devices will only have the mobile 
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node’s original home address, which means they won’t be able to find it even if 

we give it a new address matching its new location.  

• Routing based on the entire address of a host would mean the entire Internet 

would be flooded with routing information for each and every mobile device.  

 

To ensure its success, Mobile IP's designers had to meet a number of important 

goals. The resulting protocol has these key attributes and features [2]: 

1. Seamless Device Mobility Using Existing Device Address: Mobile devices can 

change their physical network attachment method and location while continuing 

to use their existing IP address.  

2. No New Addressing or Routing Requirements: The overall scheme for 

addressing and routing as in regular IP is maintained. IP addresses are still 

assigned in the conventional way, by the owner of each device. No new routing 

requirements are placed on the network, such as host-specific routes.  

3. Interoperability: Mobile IP devices can still send to and receive from existing IP 

devices that do not know how Mobile IP works, and vice-versa.  

4. Layer Transparency: The changes made by Mobile IP are confined to the 

network layer. Transport layer and higher layer protocols and applications are 

able to function as in regular IPv4, and existing connections can even be 

maintained across a move.  

5. Limited Hardware Changes: Changes are required to the software in the mobile 

device, as well as to routers used directly by the mobile device. Other devices, 

however, do not need changes, including routers between the ones on the home 

and visited networks.  

6. Scalability: Mobile IP allows a device to change from any network to any other, 

and supports this for an arbitrary number of devices. The scope of the connection 

change can be global.  

7. Security: Mobile IP works by redirecting messages, and includes authentication 

procedures to prevent an unauthorized device from causing problems.  
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7.2 Mobile IP Terminology 

 
The different terminologies used in the context of Mobile IP are as follows [3]: 

1. Mobile Node (MN). A node that, as part of normal use, changes its point of 

attachment to the internet. 

2. Mobility Agent. A node (typically a router) that offers support services to mobile 

nodes. A mobility agent can either be home agent or a foreign agent.  

3. Home Network. The network at which the mobile node seems reachable, to the 

rest of internet, by virtue of its assigned IP address. 

4. Home Address (HoA). The IP address assigned to the mobile node, making it 

logically appear attached to its home network. 

5. Care-of-Address (CoA). An IP address at the mobile node’s current point of 

attachment to the internet, when the mobile node is not attached to the home 

network. In case of Mobile IPv4, the CoA remains same for a number of mobile 

nodes attached to the foreign agent (all MNs attached to a FA use one CoA, which 

is the IP address of the FA). A collocated care of address is a care of address 

assigned to one of the mobile node’s network interfaces, instead of one being 

offered by a foreign agent.  

6. Foreign Network. The network to which the mobile node is attached when it is 

not attached to its home network, and on which care of address is reachable from 

rest of the internet.  

7. Home Agent (HA). A node on the home network that effectively causes the 

mobile node to be reachable to its home address even when the mobile node is not 

attached to its home network. 

8. Foreign Agent (FA). A mobility agent on the foreign network that can assist the 

mobile node in receiving datagrams delivered to the care of address.  
9. Binding. The triplet of numbers that contains the mobile node’s home address, 

care of address and registration life time.  
10. Correspondent Node (CN). A node that sends or receives a packet to a mobile 

node. A CN may be another MN or a non-mobile internet node.  
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7.3 Mobile IP Functions  

 
Mobile IP includes a host of special functions that are used to set up and manage 

datagram forwarding. To see how these support functions work, following describes the 

general operation of Mobile IP as a simplified series of steps [2]: 

1. Agent Communication: The mobile node finds an agent on its LAN by engaging 

in the Agent Discovery process. It listens for Agent Advertisement messages sent 

out by agents and from this can determine where it is located. If it doesn't hear 

these messages it can ask for one using an Agent Solicitation message.  

2. Network Location Determination: The mobile node determines whether it is on 

its home network or a foreign one by looking at the information in the Agent 

Advertisement message.  

 

If it is on its home network it functions using regular IP. For the device which just 

moved to a foreign network, the steps are [2]: 

3. Care-Of Address Acquisition: The device obtains a temporary address called a 

care-of address. This either comes from the Agent Advertisement message from 

the foreign agent, or through some other means. This address is used only as the 

destination point for forwarding datagrams, and for no other purpose.  

4. Agent Registration: The mobile node informs the home agent on its home 

network of its presence on the foreign network and enables datagram forwarding, 

by registering with the home agent. This may be done either directly between the 

node and the home agent, or indirectly using the foreign agent.  

5. Datagram Forwarding: The home agent captures datagrams intended for the 

mobile node and forwards them. It may send them either directly to the node or 

indirectly to the foreign agent for delivery, depending on the type of care-of 

address in use.  

 

Datagram forwarding continues until the current agent registration expires. The 

device can then renew it. If it moves again, it repeats the process to get a new care-of 

address and then registers its new location with the home agent. When the mobile node 



 77

returns to its home network, it deregisters with the FA to cancel datagram forwarding and 

resumes normal IP operation. 

 
7.3.1 Agent Discovery Process  

When a mobile node is first turned on, it cannot assume that it is still at home the way 

normal IP devices do. It must first determine where it is, and if it is not at home, begin the 

process of setting up datagram forwarding from its home network. This process is 

accomplished by communicating with a local router serving as an agent, through the 

process called agent discovery [1]. 

 

Agent/Node Communication: Agent discovery is the method by which a mobile node 

first establishes contact with an agent on the LAN to which it is attached. Messages 

are sent from the agent to the node containing important information about the agent, 

a message can also be sent from the node to the agent asking for this information to 

be sent.  

Orientation: The node uses the agent discovery process to determine where it is. 

Specifically, it learns whether it is on its home network or a foreign network by 

identifying the agent that sends it messages.  

Care-Of Address Assignment: The agent discovery process is the method used to tell 

a mobile node the care of address it should use, when foreign agent care-of 

addressing is used.  

 

Mobile IP agents are routers that have been given additional programming to 

make them Mobile IP aware. The communication between a mobile node and the agent 

on its local network is basically the same as the normal communication required between 

a device on an IP network and its local router, except more information needs to be sent 

when the router is an agent. 

Agent Advertisement: This is a message transmitted regularly by a router acting as a 

Mobile IP agent. It consists of a regular Router Advertisement message that has one 

or more extensions added that contain Mobile-IP-specific information for mobile 

nodes.  
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Agent Solicitation: This message can be sent by a mobile IP device to urge a local 

agent to send an Agent Advertisement [1].  

 
7.3.2 Mobile IP Home Agent Registration  

Once a mobile node has completed agent discovery, it knows whether it is on its 

home network or a foreign network. If on its home network it communicates as a regular 

IP device, but if on a foreign network it must activate Mobile IP. This requires that it 

communicate with its home agent so information and instructions can be exchanged 

between the two. This process is called home agent registration, or more simply, just 

registration. 

The main purpose of registration is to actually start Mobile IP working. The 

mobile node must contact the home agent and tell it that it is on a foreign network and 

request that datagram forwarding be turned on. It also must let the home agent know its 

CoA so the home agent knows where to send the forwarded datagrams. The home agent 

in turn needs to communicate various types of information back to the mobile node when 

registration is performed. Foreign agent is not really involved in registration. 

Successful registration establishes what is called in the standard a mobility 

binding between a home agent and a mobile node. For the duration of the registration, the 

mobile node's regular home address is tied to its current care-of address and the home 

agent will encapsulate and forward datagrams addressed to the home address over to the 

care-of address. The mobile node is supposed to manage its registration and handle 

various events using several actions: 

Registration: The mobile node initiates a registration when it first detects it has 

moved from its home network to a foreign network.  

Deregistration: When the mobile node returns home, it should tell the home agent to 

cancel forwarding, a process called deregistration.  

Re-registration: If the mobile node moves from one foreign network to another, or if 

its care-of-address changes, it must update its registration with the home agent. It also 

must do so if it’s current registration is about to expire, even if it remains stationary 

on one foreign network.  
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Each registration is established only for a specific length of time, which is why 

regular re-registration is required whether the device moves or not. Registrations are 

time-limited to ensure that they do not become stale. If, for example, a node forgets to de-

register when it returns home, the datagram forwarding will eventually stop when the 

registration expires. 

 
7.3.3 Mobile IP Data Encapsulation and Tunneling  

Once a mobile node on a foreign network has completed a successful registration 

with its home agent, the home agent will intercept datagrams intended for the mobile 

node as they are routed to its home network, and forward them to the mobile node. This 

is done by encapsulating the datagrams and then sending them to the node's care-of 

address. 

 

 
Figure 7.1: Tunneling operation in Mobile IP 
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Encapsulation is required because each datagram we intercept and forward needs 

to be resent over the network to the device's care-of address. Its not just having the home 

agent to change the destination address and stick it back out on the network, but there are 

various complications that make this unwise. It makes more sense to take the entire 

datagram and wrap it in a new set of headers before retransmitting.  

The encapsulation process creates a logical construct called a tunnel between the 

device that encapsulates and the one that decapsulates. The tunnel represents a path over 

which datagrams are forwarded across an arbitrary network, with the details of the 

encapsulated datagram (meaning the original IP headers) temporarily hidden. 

In Mobile IP, the start of the tunnel is the home agent, which does the 

encapsulation. The end of the tunnel depends on what sort of care-of address is being 

used. Either mobile node itself is the end of the tunnel and strips off the outer header or 

the foreign agent is the end of the tunnel. It receives encapsulated messages from the 

home agent, strips off the outer IP header and then delivers the datagram to the mobile 

node. This is generally done using layer two, because the mobile node and foreign agent 

are on the same local network, and of course, the mobile node does not have its own IP 

address on that network, it is using that of the foreign agent. 

 

7.3.4 Mobile IP Conventional Tunneling 

Normally, the tunnel described above is used only for datagrams that have been 

sent to the mobile node and captured by the home agent. When the mobile node wants to 

send a datagram, it doesn't tunnel it back to the home agent which makes it inefficient. 

Instead it just sends out the datagram directly using whatever router it can find on its 

current network, which may or may not be a foreign agent. When it does this, it uses its 

own home address as the source address for any requests it sends. As a result, any 

response to those requests will go back to the home network. This sets up a sort of 

routing triangle for these kinds of transactions [1]: 

1. The mobile node sends a request from the foreign network to some third party 

device somewhere on the network.  

2. The third party device responds back to the mobile node. However, this sends the 

reply back to the mobile node's home address on its home network.  
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3. The home agent intercepts the response on the home network and tunnels it back 

to the mobile node.  

 

 
Figure 7.2: Triangle Routing 

The reverse transaction would be the same, just in the reverse order. In that case 

the third party i-e, Internet device would send a request to mobile node, which would be 

received and forwarded by the home agent. The mobile node would reply back directly to 

the internet host. 

 

7.3.5 Mobile IP Reverse Tunneling 

There may be situations where it is not feasible or desired to have the mobile node 

send datagrams directly to the network using a router on the foreign network. In this case, 

an optional feature called reverse tunneling may be deployed, if it is supported by the 

mobile node, the home agent and if relevant, the foreign agent. 

When this is done, a reverse tunnel to complement the normal one is set up between the 

mobile node and the home agent, or between the foreign agent and the home agent, 

depending on care-of address type. All transmissions from the mobile node are tunneled 

back to the home network where the home agent transmits them over the network, 

resulting in a more symmetric operation rather than the triangle.  
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One situation where reverse tunneling may be required is if the network where the mobile 

node is located has implemented certain security measures that prohibit the node from 

sending datagrams using its normal IP address. In particular, a network may be set up not 

to allow outgoing datagrams with a source address that doesn’t match its network prefix. 

This is often done to prevent spoofing [4].  
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8.1 DoS Attacks in Mobile IP Networks 

 
 DoS attacks in Mobile IP networks can be classified as either authentication-

based attacks or flooding-based attacks [1].   

 

8.1.1 Authentication-based Attacks 

In case of authentication-based attacks, an unauthorized node spoofs the identity 

of a legitimate MN and redirects the packets destined for MN to other network locations. 

So a service is denied to the legitimate MN. In current wireless networks, authentication-

based attacks form the basis for most DoS attacks. Example of authentication-based 

attack is Man-in -the-Middle attack [2], in which a rogue device (devices introduced into 

the network that are not authorized. Although this could most easily be a simple 

unauthorized laptop, more interesting for an adversary would be a rogue wireless access 

point, DHCP server or a switch) authenticates with an access point (AP) as a valid user 

and then presents itself to other users as a viable AP. When a legitimate user attempts to 

authenticate with the corporate network via the rogue AP, the rogue node will tunnel the 

authentication session to the real network and steal the session encryption keys when they 

are passed between the client and the authentication server. These keys can then be used 

to authenticate anywhere in the network. In case of Mobile IP networks, authentication-

based attack occurs when an unauthorized user manages to do a bogus registration of a 

new Care-of-Address (CoA) for a particular mobile node. Such a bogus registration gives 

rise to two problems: disconnection of legitimate mobile node and monitoring its traffic.  

 

8.1.2 Flooding-based Attacks 

 Flooding-based attacks in Mobile IP networks are similar to flooding attacks in 

wired IP networks, in which a mobile node acts as a source of attack traffic. The only 

difference is that, in case of Mobile IP networks, the mobile node can roam among 

different foreign networks while flooding the victim, due to which it becomes difficult to 

trace the attacker. A typical example is shown in figure 8.1.  

 IP traceback techniques can only trace flooding-based attacks in Mobile IP 

networks. Authentication-based attacks are difficult to trace because the victim 
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(legitimate MN) has no attack traffic to analyze and carry out traceback. It is however 

possible to prevent authentication-based attacks by strong authentication on all 

registration messages which are exchanged during the registration process.  

 

8.2 Extending Our Proposed Technique for Mobile IPv4 

 
 In case of Mobile IP networks, two scenarios are of particular importance, which 

are as follows: 

1. When the MN is acting as a source of DoS attack and is residing on the home 

network. 

2. When the MN is acting as a source of DoS attack and residing on the foreign 

network.  

 

 
Figure 8.1: Mobile node flooding the victim while roaming among different foreign 

                            networks 
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The first case is not specific to Mobile IPv4. It can be treated as a normal attack 

for IPv4, since the mobile node operates without mobility services, when residing on the 

home network. So the traffic of the MN is marked in a similar manner as proposed for a 

wired node.  
 The second case is specific to Mobile IPv4. We propose to mark the traffic of 

mobile node (MN) at the foreign agent (FA). The FA first checks the TTL value. If a 

match of TTL value is found with the stored table, the packet is marked. But here, the 

marking is done with home agent (HA) address, rather than CoA. The primary reason for 

this is that the MN can roam among different foreign networks, while attacking the 

victim. Marking with HA address is recommended because it remains fixed unlike the 

CoA which changes at each new foreign network. Thus the victim can trace the attacker 

even if is not residing on its home network. For marking with HA agent address, the FA 

must know the MN’s HA address. This problem is solved by the visitor list (table 8.1) on 

the foreign agent. The FA should read the media address of packets and retrieve the 

corresponding HA address in the visitor list.  For marking purposes, the record route field 

is used in the same manner as proposed for wired networks. After marking the packet, the 

reserved flag in the IP header should be set to ‘1’. 

 A serious problem arises when filtering of packets with invalid source addresses 

is considered for Mobile IP networks. The MN, when residing on the foreign network, 

uses its home address (HoA) as source IP address when sending packets to any other 

node in the internet [3]. So the traffic of MN would be discarded at the foreign network. 

Since filtering is essential part of out technique as well, we propose conditional filtering 

at the FA. If the packet is not having a valid source IP address, the source address should 

be checked in the visitor list. If there is an entry for the source address, the packet should 

be marked with the HA address, otherwise the packet should be discarded. 

Table 8.1: Visitor List on the Foreign Agent 

HoA HA Address Media Address Lifetime (sec) 

100.10.1.9 100.10.1.0 00-E1-66-95-65-50 200 

200.20.2.18 200.20.2.0 00-E1-66-93-76-49 100 

-------------- ------------ ------------------ ------------ 
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 Consider the scenario depicted in figure 8.1. If the MN acted as a source of DoS 

attack when residing on the home network, its traffic would be marked by the HA with 

the HA address. In this case there is no need to mark the packets again, if the MN moved 

to a foreign network after some time. The packet is already marked with the HA address. 

This is where the importance of setting the reserved flag to ‘1’ comes. The packet is 

marked only if reserved flag is ‘0’, meeting other conditions. The complete marking 

process, in case of hybrid wired / mobile IP networks, follows the following sequence of 

actions at the router / HA / FA: 

1. Check the TTL value in the IP header. If a match of TTL value is found with 

the stored table, the packet is valid for marking. If match not found, simply 

forward the packet. 

2. Check the Reserved Flag. If its value is ‘1’, forward the packet without 

marking. If its value is ‘0’, the packet is valid for marking. 

3. Check the source IP address. If it is having a valid network id, mark the packet. 

That is, write IP address of router / HA into first four bytes of route data in 

Record Route (RR) field.  
4. If the source address is not having a valid network id, check the IP address in 

visitor list (on FA). If a match found, retrieve the corresponding HA address 

from visitor list. Then, write HA address into first four bytes of route data in RR 

field.  
5. If source IP address is not having a valid network id and there is no entry of the 

source IP address in the visitor list, simply discard the packet.  
It should be noted that the marking scenario of Mobile IPv4, when reverse 

tunneling [4] is used, changes to the general IPv4 marking scenario but the packet should 

be marked before encapsulation.  
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Conclusion  
 

The development of IP traceback techniques is motivated by different DoS attacks 

in recent years. With the development of Mobile IP, more complex DoS attacks can be 

launched. However, IP traceback is the first step in identifying the attacker behind the 

attacks. The effectiveness of any traceback technique depends primarily on its overhead, 

convergence and the ability to trace any type of DoS attack. The hybrid technique 

presented here is capable of tracing any type of DoS attack because we can trace even a 

single packet. It can even trace beyond the corporate firewalls which is a challenge faced 

by most of the existing traceback techniques. It also eliminates the reflector DDoS 

attacks. It is particularly designed for networks supporting both wired and mobile nodes. 

Today there is a need for practical implementation of an effective technique so that IP 

traceback could be carried out in real time across the internet.  

 

Future work 

 
 There is a lack of research on IP traceback for Mobile IPv6. The packet marking 

technique presented in this thesis is compatible with Mobile IPv4; however it can be 

extended for Mobile IPv6.  
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Tcl Code 
#Open the new simulator 
set ns [new Simulator] 
 
set nf [open out.nam w] 
$ns namtrace-all $nf 
 
#Open the output files 
set f0 [open out.tr w] 
#$ns trace-all $f0 
 
 
#Define a 'finish' procedure 
proc finish {} { 
 global ns nf f0 f 
        $ns flush-trace 
        close $nf 
        exec nam out.nam & 
 #Close the output files 
 close $f0 
 #Call xgraph to display the results 
     exec xgraph -x time -y throughput(mbps) out.tr -geometry 800x400 & 
 
#for the RED function 
    global tchan_ 
    set awkCode { 
 { 
     if ($1 == "Q" && NF>2) { 
  print $2, $3 >> "temp.q"; 
  set end $2 
     } 
     else if ($1 == "a" && NF>2) 
     print $2, $3 >> "temp.a"; 
 } 
    } 
    set f [open temp.queue w] 
    puts $f "TitleText: red" 
    puts $f "Device: Postscript" 
     
    if { [info exists tchan_] } { 
 close $tchan_ 
    } 
    exec rm -f temp.q temp.a  
    exec touch temp.a temp.q 
     
    exec awk $awkCode all.q 
     
    puts $f \"queue 
    exec cat temp.q >@ $f   
    puts $f \n\"ave_queue 
    exec cat temp.a >@ $f 
    close $f 
    exec xgraph -bb -tk -x time -y queue temp.queue & 
        exit 0 
} 
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$ns rtproto DV 
for {set i 0} {$i < 18} {incr i} { 
    set n($i) [$ns node] 
} 
 
for {set i 2} {$i < 7} {incr i} { 
    $ns duplex-link $n(1) $n($i) 10Mb 10ms DropTail 
} 
 
for {set i 7} {$i < 12} {incr i} { 
    $ns duplex-link $n(0) $n($i) 10Mb 10ms DropTail 
} 
 
for {set i 13} {$i < 18} {incr i} { 
    $ns duplex-link $n(12) $n($i) 10Mb 10ms DropTail 
} 
 
$ns duplex-link $n(0) $n(1) 10Mb 15ms DropTail 
$ns duplex-link $n(0) $n(12) 10Mb 15ms DropTail 
 
set tcp [new Agent/TCP] 
$tcp set class_ 1 
$ns attach-agent $n(7) $tcp 
 
set sink [new Agent/TCPSink] 
$ns attach-agent $n(3) $sink 
 
set ftp [new Application/FTP] 
$ftp attach-agent $tcp 
$ns at 0.5 "$ftp start" 
 
set tcp1 [new Agent/TCP] 
$tcp1 set class_ 2 
$ns attach-agent $n(13) $tcp1 
 
set sink1 [new Agent/TCPSink] 
$ns attach-agent $n(8) $sink1 
 
 
set ftp1 [new Application/FTP] 
$ftp1 attach-agent $tcp1 
$ns at 1.0 "$ftp1 start" 
 
set tcp2 [new Agent/TCP] 
$tcp2 set class_ 3 
$ns attach-agent $n(14) $tcp2 
 
set sink2 [new Agent/TCPSink] 
$ns attach-agent $n(6) $sink2 
 
 
set ftp2 [new Application/FTP] 
$ftp2 attach-agent $tcp2 
$ns at 10.0 "$ftp2 start" 
 
$ns connect $tcp $sink 
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$ns connect $tcp1 $sink1 
$ns connect $tcp2 $sink2 
 
$ns color 1 Blue 
$ns color 2 Red 
$ns color 3 Black 
 
#Define a procedure which periodically records the bandwidth received  
proc record {} { 
        global sink f0  
 #Get an instance of the simulator 
 set ns [Simulator instance] 
 #Set the time after which the procedure should be called again 
        set time 0.5 
 #How many bytes have been received by the traffic sinks? 
        set bw0 [$sink set bytes_] 
 #Get the current time 
        set now [$ns now] 
 #Calculate the bandwidth (in MBit/s) and write it to the files 
        puts $f0 "$now [expr $bw0/$time*8/261000]" 
     #Reset the bytes_ values on the traffic sinks 
        $sink set bytes_ 0 
 #Re-schedule the procedure 
        $ns at [expr $now+$time] "record" 
} 
 
 
 
 
#Start logging the received bandwidth 
$ns at 0.0 "record" 
#Start the traffic sources 
$ns at 0.5 "$ftp start" 
$ns at 1.0 "$ftp1 start" 
$ns at 10.0 "$ftp2 start" 
 
 
#Stop the traffic sources 
$ns at 19.5 "$ftp stop" 
$ns at 19.5 "$ftp1 stop" 
$ns at 19.5 "$ftp2 stop" 
 
 
#Call the finish procedure after 60 seconds simulation time 
$ns at 20.0 "finish" 
 
 
#Run the simulation 
$ns run 
 
 
# Tracing a queue 
$ns queue-limit $n(1) $n(3) 15 
set redq [[$ns link $n(1) $n(3)] queue] 
set tchan_ [open all.q w] 
$redq trace curq_ 
$redq trace ave_ 
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$redq attach $tchan_ 
 
 
#Run the simulation 
$ns run 
 
#...................... 
 

Modified Internal Files of ns-2 
 
-------------------------------------------------ip.h------------------------------------------------------ 
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t 
-*- */ 
/* 
 * Copyright (c) 1997 Regents of the University of California. 
 * All rights reserved. 
 *  
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 2. Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in 
the 
 *    documentation and/or other materials provided with the 
distribution. 
 * 3. All advertising materials mentioning features or use of this 
software 
 *    must display the following acknowledgement: 
 *  This product includes software developed by the MASH Research 
 *  Group at the University of California Berkeley. 
 * 4. Neither the name of the University nor of the Research Group may 
be 
 *    used to endorse or promote products derived from this software 
without 
 *    specific prior written permission. 
 *  
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' 
AND 
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 
THE 
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE 
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE 
LIABLE 
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
CONSEQUENTIAL 
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 
GOODS 
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) 
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
STRICT 
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 
ANY WAY 
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 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 
OF 
 * SUCH DAMAGE. 
 * 
 * @(#) $Header: /cvsroot/nsnam/ns-2/common/ip.h,v 1.16 2006/02/22 
13:32:23 mahrenho Exp $ 
 */ 
 
/* a network layer; basically like IPv6 */ 
#ifndef ns_ip_h 
#define ns_ip_h 
 
#include "config.h" 
#include "packet.h" 
 
 
#define IP_HDR_LEN      24 
#define IP_DEF_TTL      32 
 
// The following undef is to suppress warnings on systems were 
// IP_BROADCAST is defined. 
#ifdef IP_BROADCAST   
#undef IP_BROADCAST 
#endif 
 
// #define IP_BROADCAST ((u_int32_t) 0xffffffff) 
static const u_int32_t IP_BROADCAST = ((u_int32_t) 0xffffffff); 
 
 
struct hdr_ip { 
 /* common to IPv{4,6} */ 
 ns_addr_t src_; 
 ns_addr_t dst_; 
 int32_t  ingressrecord_; 
 int  ttl_; 
  
 
 /* Monarch extn */ 
//  u_int16_t sport_; 
//  u_int16_t dport_; 
  
 /* IPv6 */ 
 int  fid_; /* flow id */ 
 int  prio_; 
 
 static int offset_; 
 inline static int& offset() { return offset_; } 
 inline static hdr_ip* access(const Packet* p) { 
  return (hdr_ip*) p->access(offset_); 
 } 
 
 /* per-field member acces functions */ 
 ns_addr_t& src() { return (src_); } 
 nsaddr_t& saddr() { return (src_.addr_); } 
  
        int32_t& sport() { return src_.port_;} 
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 ns_addr_t& dst() { return (dst_); } 
 nsaddr_t& daddr() { return (dst_.addr_); } 
  
        int32_t& dport() { return dst_.port_;} 
 int32_t& ingressrecord() { return (ingressrecord_); } 
 int& ttl() { return (ttl_); } 
 /* ipv6 fields */ 
 int& flowid() { return (fid_); } 
 int& prio() { return (prio_); } 
}; 
 
#endif 
 
---------------------------------ip.cc----------------------------- 
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t 
-*- */ 
/* 
 * Copyright (c) 1997 Regents of the University of California. 
 * All rights reserved. 
 *  
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 2. Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in 
the 
 *    documentation and/or other materials provided with the 
distribution. 
 * 3. All advertising materials mentioning features or use of this 
software 
 *    must display the following acknowledgement: 
 *  This product includes software developed by the MASH Research 
 *  Group at the University of California Berkeley. 
 * 4. Neither the name of the University nor of the Research Group may 
be 
 *    used to endorse or promote products derived from this software 
without 
 *    specific prior written permission. 
 *  
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' 
AND 
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 
THE 
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE 
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE 
LIABLE 
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
CONSEQUENTIAL 
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 
GOODS 
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) 
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
STRICT 
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 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 
ANY WAY 
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 
OF 
 * SUCH DAMAGE. 
 */ 
 
#ifndef lint 
/*static const char rcsid[] = 
    "@(#) $Header: /cvsroot/nsnam/ns-2/common/ip.cc,v 1.8 1998/08/12 
23:41:05 gnguyen Exp $";*/ 
#endif 
 
#include "packet.h" 
#include "ip.h" 
 
int hdr_ip::offset_; 
 
 
static class IPHeaderClass : public PacketHeaderClass { 
public: 
        IPHeaderClass() : PacketHeaderClass("PacketHeader/IP", 
         sizeof(hdr_ip)) { 
  bind_offset(&hdr_ip::offset_); 
 } 
 void export_offsets() { 
  field_offset("src_", OFFSET(hdr_ip, src_)); 
  field_offset("dst_", OFFSET(hdr_ip, dst_)); 
  field_offset("ingressrecord_", OFFSET(hdr_ip, 
ingressrecord_)); 
  field_offset("ttl_", OFFSET(hdr_ip, ttl_)); 
  field_offset("fid_", OFFSET(hdr_ip, fid_)); 
  field_offset("prio_", OFFSET(hdr_ip, prio_)); 
 } 
} class_iphdr; 
 
 
--------------------------------packet.h------------------------------- 
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t 
-*- */ 
/* 
 * Copyright (c) 1997 Regents of the University of California. 
 * All rights reserved. 
 * 
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 2. Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in 
the 
 *    documentation and/or other materials provided with the 
distribution. 
 * 3. All advertising materials mentioning features or use of this 
software 
 *    must display the following acknowledgement: 
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 * This product includes software developed by the Computer Systems 
 * Engineering Group at Lawrence Berkeley Laboratory. 
 * 4. Neither the name of the University nor of the Laboratory may be 
used 
 *    to endorse or promote products derived from this software without 
 *    specific prior written permission. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' 
AND 
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 
THE 
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE 
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE 
LIABLE 
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
CONSEQUENTIAL 
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 
GOODS 
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) 
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
STRICT 
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 
ANY WAY 
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 
OF 
 * SUCH DAMAGE. 
 * 
 * @(#) $Header: /cvsroot/nsnam/ns-2/common/packet.h,v 1.100 2006/02/22 
13:32:23 mahrenho Exp $ (LBL) 
 */ 
 
#ifndef ns_packet_h 
#define ns_packet_h 
 
#include <string.h> 
#include <assert.h> 
 
#include "config.h" 
#include "scheduler.h" 
#include "object.h" 
#include "lib/bsd-list.h" 
#include "packet-stamp.h" 
#include "ns-process.h" 
 
// Used by wireless routing code to attach routing agent 
#define RT_PORT  255 /* port that all route msgs are sent to 
*/ 
 
#define HDR_CMN(p)      (hdr_cmn::access(p)) 
#define HDR_ARP(p)      (hdr_arp::access(p)) 
#define HDR_MAC(p)      (hdr_mac::access(p)) 
#define HDR_MAC802_11(p) ((hdr_mac802_11 *)hdr_mac::access(p)) 
#define HDR_MAC_TDMA(p) ((hdr_mac_tdma *)hdr_mac::access(p)) 
#define HDR_SMAC(p)     ((hdr_smac *)hdr_mac::access(p)) 
#define HDR_LL(p)       (hdr_ll::access(p)) 
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#define HDR_HDLC(p)     ((hdr_hdlc *)hdr_ll::access(p)) 
#define HDR_IP(p)       (hdr_ip::access(p)) 
#define HDR_RTP(p)      (hdr_rtp::access(p)) 
#define HDR_TCP(p)      (hdr_tcp::access(p)) 
#define HDR_SCTP(p)     (hdr_sctp::access(p)) 
#define HDR_SR(p)       (hdr_sr::access(p)) 
#define HDR_TFRC(p)     (hdr_tfrc::access(p)) 
#define HDR_TORA(p)     (hdr_tora::access(p)) 
#define HDR_IMEP(p)     (hdr_imep::access(p)) 
#define HDR_CDIFF(p)    (hdr_cdiff::access(p))  /* chalermak's 
diffusion*/ 
//#define HDR_DIFF(p)     (hdr_diff::access(p))  /* SCADD's diffusion 
ported into ns */ 
#define HDR_LMS(p)  (hdr_lms::access(p)) 
 
/* --------------------------------------------------------------------
*/ 
 
enum packet_t { 
 PT_TCP, 
 PT_UDP, 
 PT_CBR, 
 PT_AUDIO, 
 PT_VIDEO, 
 PT_ACK, 
 PT_START, 
 PT_STOP, 
 PT_PRUNE, 
 PT_GRAFT, 
 PT_GRAFTACK, 
 PT_JOIN, 
 PT_ASSERT, 
 PT_MESSAGE, 
 PT_RTCP, 
 PT_RTP, 
 PT_RTPROTO_DV, 
 PT_CtrMcast_Encap, 
 PT_CtrMcast_Decap, 
 PT_SRM, 
 /* simple signalling messages */ 
 PT_REQUEST,  
 PT_ACCEPT,  
 PT_CONFIRM,  
 PT_TEARDOWN,  
 PT_LIVE, // packet from live network 
 PT_REJECT, 
 
 PT_TELNET, // not needed: telnet use TCP 
 PT_FTP, 
 PT_PARETO, 
 PT_EXP, 
 PT_INVAL, 
 PT_HTTP, 
 
 /* new encapsulator */ 
 PT_ENCAPSULATED, 
 PT_MFTP, 
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 /* CMU/Monarch's extnsions */ 
 PT_ARP, 
 PT_MAC, 
 PT_TORA, 
 PT_DSR, 
 PT_AODV, 
 PT_IMEP, 
 
 // RAP packets 
 PT_RAP_DATA, 
 PT_RAP_ACK, 
 
 PT_TFRC, 
 PT_TFRC_ACK, 
 PT_PING, 
 
 // Diffusion packets - Chalermek 
 PT_DIFF, 
 
 // LinkState routing update packets 
 PT_RTPROTO_LS, 
 
 // MPLS LDP header 
 PT_LDP, 
 
 // GAF packet 
        PT_GAF,   
 
 // ReadAudio traffic 
 PT_REALAUDIO, 
 
 // Pushback Messages 
 PT_PUSHBACK, 
 
#ifdef HAVE_STL 
 // Pragmatic General Multicast 
 PT_PGM, 
#endif //STL 
 
 // LMS packets 
 PT_LMS, 
 PT_LMS_SETUP, 
 
 PT_SCTP, 
 PT_SCTP_APP1, 
 
 // SMAC packet 
 PT_SMAC, 
 
 // XCP packet 
 PT_XCP, 
  
 // HDLC packet 
 PT_HDLC, 
 
 // Bell Labs Traffic Trace Type (PackMime OL) 
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 PT_BLTRACE,  
 
 // insert new packet types here 
 PT_NTYPE // This MUST be the LAST one 
}; 
 
class p_info { 
public: 
 p_info() { 
  name_[PT_TCP]= "tcp"; 
  name_[PT_UDP]= "udp"; 
  name_[PT_CBR]= "cbr"; 
  name_[PT_AUDIO]= "audio"; 
  name_[PT_VIDEO]= "video"; 
  name_[PT_ACK]= "ack"; 
  name_[PT_START]= "start"; 
  name_[PT_STOP]= "stop"; 
  name_[PT_PRUNE]= "prune"; 
  name_[PT_GRAFT]= "graft"; 
  name_[PT_GRAFTACK]= "graftAck"; 
  name_[PT_JOIN]= "join"; 
  name_[PT_ASSERT]= "assert"; 
  name_[PT_MESSAGE]= "message"; 
  name_[PT_RTCP]= "rtcp"; 
  name_[PT_RTP]= "rtp"; 
  name_[PT_RTPROTO_DV]= "rtProtoDV"; 
  name_[PT_CtrMcast_Encap]= "CtrMcast_Encap"; 
  name_[PT_CtrMcast_Decap]= "CtrMcast_Decap"; 
  name_[PT_SRM]= "SRM"; 
 
  name_[PT_REQUEST]= "sa_req";  
  name_[PT_ACCEPT]= "sa_accept"; 
  name_[PT_CONFIRM]= "sa_conf"; 
  name_[PT_TEARDOWN]= "sa_teardown"; 
  name_[PT_LIVE]= "live";  
  name_[PT_REJECT]= "sa_reject"; 
 
  name_[PT_TELNET]= "telnet"; 
  name_[PT_FTP]= "ftp"; 
  name_[PT_PARETO]= "pareto"; 
  name_[PT_EXP]= "exp"; 
  name_[PT_INVAL]= "httpInval"; 
  name_[PT_HTTP]= "http"; 
  name_[PT_ENCAPSULATED]= "encap"; 
  name_[PT_MFTP]= "mftp"; 
  name_[PT_ARP]= "ARP"; 
  name_[PT_MAC]= "MAC"; 
  name_[PT_TORA]= "TORA"; 
  name_[PT_DSR]= "DSR"; 
  name_[PT_AODV]= "AODV"; 
  name_[PT_IMEP]= "IMEP"; 
 
  name_[PT_RAP_DATA] = "rap_data"; 
  name_[PT_RAP_ACK] = "rap_ack"; 
 
   name_[PT_TFRC]= "tcpFriend"; 
  name_[PT_TFRC_ACK]= "tcpFriendCtl"; 
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  name_[PT_PING]="ping"; 
 
   /* For diffusion : Chalermek */ 
   name_[PT_DIFF] = "diffusion"; 
 
  // Link state routing updates 
  name_[PT_RTPROTO_LS] = "rtProtoLS"; 
 
  // MPLS LDP packets 
  name_[PT_LDP] = "LDP"; 
 
  // for GAF 
                name_[PT_GAF] = "gaf";       
 
  // RealAudio packets 
  name_[PT_REALAUDIO] = "ra"; 
 
  //pushback  
  name_[PT_PUSHBACK] = "pushback"; 
 
#ifdef HAVE_STL 
  // for PGM 
  name_[PT_PGM] = "PGM"; 
#endif //STL 
 
  // LMS entries 
  name_[PT_LMS]="LMS"; 
  name_[PT_LMS_SETUP]="LMS_SETUP"; 
 
  name_[PT_SCTP]= "sctp"; 
   name_[PT_SCTP_APP1] = "sctp_app1"; 
   
  // smac 
  name_[PT_SMAC]="smac"; 
 
  // HDLC 
  name_[PT_HDLC]="HDLC"; 
 
  // XCP 
  name_[PT_XCP]="xcp"; 
 
  // Bell Labs (PackMime OL) 
  name_[PT_BLTRACE]="BellLabsTrace"; 
   
  name_[PT_NTYPE]= "undefined"; 
 } 
 const char* name(packet_t p) const {  
  if ( p <= PT_NTYPE ) return name_[p]; 
  return 0; 
 } 
 static bool data_packet(packet_t type) { 
  return ( (type) == PT_TCP || \ 
    (type) == PT_TELNET || \ 
    (type) == PT_CBR || \ 
    (type) == PT_AUDIO || \ 
    (type) == PT_VIDEO || \ 
    (type) == PT_ACK || \ 
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    (type) == PT_SCTP || \ 
    (type) == PT_SCTP_APP1 || \ 
    (type) == PT_HDLC \ 
   ); 
 } 
private: 
 static char* name_[PT_NTYPE+1]; 
}; 
extern p_info packet_info; /* map PT_* to string name */ 
//extern char* p_info::name_[]; 
 
 
#define DATA_PACKET(type) ( (type) == PT_TCP || \ 
                            (type) == PT_TELNET || \ 
                            (type) == PT_CBR || \ 
                            (type) == PT_AUDIO || \ 
                            (type) == PT_VIDEO || \ 
                            (type) == PT_ACK || \ 
                            (type) == PT_SCTP || \ 
                            (type) == PT_SCTP_APP1 \ 
                            ) 
 
 
//#define OFFSET(type, field) ((long) &((type *)0)->field) 
#define OFFSET(type, field) ( (char *)&( ((type *)256)->field )  - 
(char *)256) 
 
class PacketData : public AppData { 
public: 
 PacketData(int sz) : AppData(PACKET_DATA) { 
  datalen_ = sz; 
  if (datalen_ > 0) 
   data_ = new unsigned char[datalen_]; 
  else 
   data_ = NULL; 
 } 
 PacketData(PacketData& d) : AppData(d) { 
  datalen_ = d.datalen_; 
  if (datalen_ > 0) { 
   data_ = new unsigned char[datalen_]; 
   memcpy(data_, d.data_, datalen_); 
  } else 
   data_ = NULL; 
 } 
 virtual ~PacketData() {  
  if (data_ != NULL)  
   delete []data_;  
 } 
 unsigned char* data() { return data_; } 
 
 virtual int size() const { return datalen_; } 
 virtual AppData* copy() { return new PacketData(*this); } 
private: 
 unsigned char* data_; 
 int datalen_; 
}; 
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//Monarch ext 
typedef void (*FailureCallback)(Packet *,void *); 
 
class Packet : public Event { 
private: 
 unsigned char* bits_; // header bits 
// unsigned char* data_; // variable size buffer for 'data' 
//   unsigned int datalen_; // length of variable size buffer 
 AppData* data_;  // variable size buffer for 'data' 
 static void init(Packet*);     // initialize pkt hdr  
 bool fflag_; 
protected: 
 static Packet* free_; // packet free list 
 int ref_count_; // free the pkt until count to 0 
public: 
 Packet* next_;  // for queues and the free list 
 static int hdrlen_; 
 
 Packet() : bits_(0), data_(0), ref_count_(0), next_(0) { } 
 inline unsigned char* const bits() { return (bits_); } 
 inline Packet* copy() const; 
 inline Packet* refcopy() { ++ref_count_; return this; } 
 inline int& ref_count() { return (ref_count_); } 
 static inline Packet* alloc(); 
 static inline Packet* alloc(int); 
 inline void allocdata(int); 
 // dirty hack for diffusion data 
 inline void initdata() { data_  = 0;} 
 static inline void free(Packet*); 
 inline unsigned char* access(int off) const { 
  if (off < 0) 
   abort(); 
  return (&bits_[off]); 
 } 
 // This is used for backward compatibility, i.e., assuming user 
data 
 // is PacketData and return its pointer. 
 inline unsigned char* accessdata() const {  
  if (data_ == 0) 
   return 0; 
  assert(data_->type() == PACKET_DATA); 
  return (((PacketData*)data_)->data());  
 } 
 // This is used to access application-specific data, not limited  
 // to PacketData. 
 inline AppData* userdata() const { 
  return data_; 
 } 
 inline void setdata(AppData* d) {  
  if (data_ != NULL) 
   delete data_; 
  data_ = d;  
 } 
 inline int datalen() const { return data_ ? data_->size() : 0; } 
 
 // Monarch extn 
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 static void dump_header(Packet *p, int offset, int length); 
 
 // the pkt stamp carries all info about how/where the pkt 
        // was sent needed for a receiver to determine if it correctly 
        // receives the pkt 
        PacketStamp txinfo_;   
 
 /* 
         * According to cmu code: 
  * This flag is set by the MAC layer on an incoming packet 
         * and is cleared by the link layer.  It is an ugly hack, but 
         * there's really no other way because NS always calls 
         * the recv() function of an object. 
  *  
         */ 
        u_int8_t        incoming; 
 
 //monarch extns end; 
}; 
 
/*  
 * static constant associations between interface special (negative)  
 * values and their c-string representations that are used from tcl 
 */ 
class iface_literal { 
public: 
 enum iface_constant {  
  UNKN_IFACE= -1, /*  
     * iface value for locally originated packets  
     */ 
  ANY_IFACE= -2   /*  
     * hashnode with iif == ANY_IFACE_    
     * matches any pkt iface (imported from TCL); 
     * this value should be different from  
     * hdr_cmn::UNKN_IFACE (packet.h) 
     */  
 }; 
 iface_literal(const iface_constant i, const char * const n) :  
  value_(i), name_(n) {} 
 inline int value() const { return value_; } 
 inline const char * const name() const { return name_; } 
private: 
 const iface_constant value_; 
 /* strings used in TCL to access those special values */ 
 const char * const name_;  
}; 
 
static const iface_literal UNKN_IFACE(iface_literal::UNKN_IFACE, "?"); 
static const iface_literal ANY_IFACE(iface_literal::ANY_IFACE, "*"); 
 
/* 
 * Note that NS_AF_* doesn't necessarily correspond with 
 * the constants used in your system (because many 
 * systems don't have NONE or ILINK). 
 */ 
enum ns_af_enum { NS_AF_NONE, NS_AF_ILINK, NS_AF_INET }; 
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struct hdr_cmn { 
 enum dir_t { DOWN= -1, NONE= 0, UP= 1 }; 
 packet_t ptype_; // packet type (see above) 
 int size_;  // simulated packet size 
 int uid_;  // unique id 
 int error_;  // error flag 
 int     errbitcnt_;     // # of corrupted bits jahn 
 int     fecsize_; 
 double ts_;  // timestamp: for q-delay measurement 
 int iface_;  // receiving interface (label) 
 dir_t direction_; // direction: 0=none, 1=up, -1=down 
 // source routing  
        char src_rt_valid; 
 double ts_arr_; // Required by Marker of JOBS  
 
 //Monarch extn begins 
 nsaddr_t prev_hop_;     // IP addr of forwarding hop 
 nsaddr_t next_hop_; // next hop for this packet 
 int      addr_type_;    // type of next_hop_ addr 
 nsaddr_t last_hop_;     // for tracing on multi-user channels 
 
        // called if pkt can't obtain media or isn't ack'd. not called 
if 
        // droped by a queue 
        FailureCallback xmit_failure_;  
        void *xmit_failure_data_; 
 
        /* 
         * MONARCH wants to know if the MAC layer is passing this back 
because 
         * it could not get the RTS through or because it did not 
receive 
         * an ACK. 
         */ 
        int     xmit_reason_; 
#define XMIT_REASON_RTS 0x01 
#define XMIT_REASON_ACK 0x02 
 
        // filled in by GOD on first transmission, used for trace 
analysis 
        int num_forwards_; // how many times this pkt was forwarded 
        int opt_num_forwards_;   // optimal #forwards 
 // Monarch extn ends; 
 
 // tx time for this packet in sec 
 double txtime_; 
 inline double& txtime() { return(txtime_); } 
 
 static int offset_; // offset for this header 
 inline static int& offset() { return offset_; } 
 inline static hdr_cmn* access(const Packet* p) { 
  return (hdr_cmn*) p->access(offset_); 
 } 
  
        /* per-field member functions */ 
 inline packet_t& ptype() { return (ptype_); } 
 inline int& size() { return (size_); } 
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 inline int& uid() { return (uid_); } 
 inline int& error() { return error_; } 
 inline int& errbitcnt() {return errbitcnt_; } 
 inline int& fecsize() {return fecsize_; } 
 inline double& timestamp() { return (ts_); } 
 inline int& iface() { return (iface_); } 
 inline dir_t& direction() { return (direction_); } 
 // monarch_begin 
 inline nsaddr_t& next_hop() { return (next_hop_); } 
 inline int& addr_type() { return (addr_type_); } 
 inline int& num_forwards() { return (num_forwards_); } 
 inline int& opt_num_forwards() { return (opt_num_forwards_); } 
        //monarch_end 
}; 
 
 
class PacketHeaderClass : public TclClass { 
protected: 
 PacketHeaderClass(const char* classname, int hdrsize); 
 virtual int method(int argc, const char*const* argv); 
 void field_offset(const char* fieldname, int offset); 
 inline void bind_offset(int* off) { offset_ = off; } 
 inline void offset(int* off) {offset_= off;} 
 int hdrlen_;  // # of bytes for this header 
 int* offset_;  // offset for this header 
public: 
 virtual void bind(); 
 virtual void export_offsets(); 
 TclObject* create(int argc, const char*const* argv); 
}; 
 
 
inline void Packet::init(Packet* p) 
{ 
 bzero(p->bits_, hdrlen_); 
} 
 
inline Packet* Packet::alloc() 
{ 
 Packet* p = free_; 
 if (p != 0) { 
  assert(p->fflag_ == FALSE); 
  free_ = p->next_; 
  assert(p->data_ == 0); 
  p->uid_ = 0; 
  p->time_ = 0; 
 } else { 
  p = new Packet; 
  p->bits_ = new unsigned char[hdrlen_]; 
  if (p == 0 || p->bits_ == 0) 
   abort(); 
 } 
 init(p); // Initialize bits_[] 
 (HDR_CMN(p))->next_hop_ = -2; // -1 reserved for IP_BROADCAST 
 (HDR_CMN(p))->last_hop_ = -2; // -1 reserved for IP_BROADCAST 
 p->fflag_ = TRUE; 
 (HDR_CMN(p))->direction() = hdr_cmn::DOWN; 
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 /* setting all direction of pkts to be downward as default;  
    until channel changes it to +1 (upward) */ 
 p->next_ = 0; 
 return (p); 
} 
 
/*  
 * Allocate an n byte data buffer to an existing packet  
 *  
 * To set application-specific AppData, use Packet::setdata() 
 */ 
inline void Packet::allocdata(int n) 
{ 
 assert(data_ == 0); 
 data_ = new PacketData(n); 
 if (data_ == 0) 
  abort(); 
} 
 
/* allocate a packet with an n byte data buffer */ 
inline Packet* Packet::alloc(int n) 
{ 
 Packet* p = alloc(); 
 if (n > 0)  
  p->allocdata(n); 
 return (p); 
} 
 
 
inline void Packet::free(Packet* p) 
{ 
 if (p->fflag_) { 
  if (p->ref_count_ == 0) { 
   /* 
    * A packet's uid may be < 0 (out of a event queue), 
or 
    * == 0 (newed but never gets into the event queue. 
    */ 
   assert(p->uid_ <= 0); 
   // Delete user data because we won't need it any 
more. 
   if (p->data_ != 0) { 
    delete p->data_; 
    p->data_ = 0; 
   } 
   init(p); 
   p->next_ = free_; 
   free_ = p; 
   p->fflag_ = FALSE; 
  } else { 
   --p->ref_count_; 
  } 
 } 
} 
 
inline Packet* Packet::copy() const 
{ 
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 Packet* p = alloc(); 
 memcpy(p->bits(), bits_, hdrlen_); 
 if (data_)  
  p->data_ = data_->copy(); 
 p->txinfo_.init(&txinfo_); 
  
 return (p); 
} 
 
inline void 
Packet::dump_header(Packet *p, int offset, int length) 
{ 
        assert(offset + length <= p->hdrlen_); 
        struct hdr_cmn *ch = HDR_CMN(p); 
 
        fprintf(stderr, "\nPacket ID: %d\n", ch->uid()); 
 
        for(int i = 0; i < length ; i+=16) { 
                fprintf(stderr, "%02x %02x %02x %02x %02x %02x %02x 
%02x %02x %02x %02x %02x %02x %02x %02x %02x\n", 
                        p->bits_[offset + i],     p->bits_[offset + i + 
1], 
                        p->bits_[offset + i + 2], p->bits_[offset + i + 
3], 
                        p->bits_[offset + i + 4], p->bits_[offset + i + 
5], 
                        p->bits_[offset + i + 6], p->bits_[offset + i + 
7], 
                        p->bits_[offset + i + 8], p->bits_[offset + i + 
9], 
                        p->bits_[offset + i + 10], p->bits_[offset + i 
+ 11], 
                        p->bits_[offset + i + 12], p->bits_[offset + i 
+ 13], 
                        p->bits_[offset + i + 14], p->bits_[offset + i 
+ 15]); 
        } 
} 
 
#endif 
 
 
-----------------------------packet.cc--------------------------------- 
 
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t 
-*- */ 
/* 
 * Copyright (c) 1994-1997 Regents of the University of California. 
 * All rights reserved. 
 * 
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 2. Redistributions in binary form must reproduce the above copyright 
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 *    notice, this list of conditions and the following disclaimer in 
the 
 *    documentation and/or other materials provided with the 
distribution. 
 * 3. All advertising materials mentioning features or use of this 
software 
 *    must display the following acknowledgement: 
 * This product includes software developed by the Computer Systems 
 * Engineering Group at Lawrence Berkeley Laboratory. 
 * 4. Neither the name of the University nor of the Laboratory may be 
used 
 *    to endorse or promote products derived from this software without 
 *    specific prior written permission. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' 
AND 
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 
THE 
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE 
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE 
LIABLE 
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
CONSEQUENTIAL 
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 
GOODS 
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) 
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
STRICT 
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 
ANY WAY 
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 
OF 
 * SUCH DAMAGE. 
 */ 
 
#ifndef lint 
static const char rcsid[] = 
    "@(#) $Header: /cvsroot/nsnam/ns-2/common/packet.cc,v 1.18 
2000/09/15 20:32:57 haoboy Exp $ (LBL)"; 
#endif 
 
#include "packet.h" 
#include "flags.h" 
 
p_info packet_info; 
char* p_info::name_[PT_NTYPE+1]; 
 
int Packet::hdrlen_ = 0;  // size of a packet's header 
Packet* Packet::free_;   // free list 
int hdr_cmn::offset_;   // static offset of common header 
int hdr_flags::offset_;   // static offset of flags header 
 
 
PacketHeaderClass::PacketHeaderClass(const char* classname, int hdrlen) 
:  



 112

 TclClass(classname), hdrlen_(hdrlen), offset_(0) 
{ 
} 
 
 
TclObject* PacketHeaderClass::create(int, const char*const*) 
{ 
 return (0); 
} 
 
void PacketHeaderClass::bind() 
{ 
 TclClass::bind(); 
 Tcl& tcl = Tcl::instance(); 
 tcl.evalf("%s set hdrlen_ %d", classname_, hdrlen_); 
 export_offsets(); 
 add_method("offset"); 
} 
 
void PacketHeaderClass::export_offsets() 
{ 
} 
 
void PacketHeaderClass::field_offset(const char* fieldname, int offset) 
{ 
 Tcl& tcl = Tcl::instance(); 
 tcl.evalf("%s set offset_(%s) %d", classname_, fieldname, 
offset); 
} 
 
int PacketHeaderClass::method(int ac, const char*const* av) 
{ 
 Tcl& tcl = Tcl::instance(); 
 int argc = ac - 2; 
 const char*const* argv = av + 2; 
 if (argc == 3) { 
  if (strcmp(argv[1], "offset") == 0) { 
   if (offset_) { 
    *offset_ = atoi(argv[2]); 
    return TCL_OK; 
   } 
   tcl.resultf("Warning: cannot set offset_ for %s", 
        classname_); 
   return TCL_OK; 
  } 
 } 
 else if (argc == 2) { 
  if (strcmp(argv[1], "offset") == 0) { 
   if (offset_) { 
    tcl.resultf("%d", *offset_); 
    return TCL_OK; 
   } 
  } 
 } 
 return TclClass::method(ac, av); 
} 
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class CommonHeaderClass : public PacketHeaderClass { 
public: 
 CommonHeaderClass() : PacketHeaderClass("PacketHeader/Common", 
      sizeof(hdr_cmn)) { 
  bind_offset(&hdr_cmn::offset_); 
 } 
 void export_offsets() { 
  field_offset("ptype_", OFFSET(hdr_cmn, ptype_)); 
  field_offset("size_", OFFSET(hdr_cmn, size_)); 
  field_offset("uid_", OFFSET(hdr_cmn, uid_)); 
  field_offset("error_", OFFSET(hdr_cmn, error_)); 
 }; 
} class_cmnhdr; 
 
class FlagsHeaderClass : public PacketHeaderClass { 
public: 
 FlagsHeaderClass() : PacketHeaderClass("PacketHeader/Flags", 
      sizeof(hdr_flags)) { 
  bind_offset(&hdr_flags::offset_); 
 } 
} class_flagshdr; 
 
 
/* manages active packet header types */ 
class PacketHeaderManager : public TclObject { 
public: 
 PacketHeaderManager() { 
  bind("hdrlen_", &Packet::hdrlen_); 
 } 
}; 
 
static class PacketHeaderManagerClass : public TclClass { 
public: 
 PacketHeaderManagerClass() : TclClass("PacketHeaderManager") {} 
 TclObject* create(int, const char*const*) { 
  return (new PacketHeaderManager); 
 } 
} class_packethdr_mgr; 
 
 
-----------------------------------ttl.cc------------------------------ 
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t 
-*- */ 
/* 
 * Copyright (c) 1996-1997 Regents of the University of California. 
 * All rights reserved. 
 *  
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 2. Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in 
the 
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 *    documentation and/or other materials provided with the 
distribution. 
 * 3. All advertising materials mentioning features or use of this 
software 
 *    must display the following acknowledgement: 
 *  This product includes software developed by the MASH Research 
 *  Group at the University of California Berkeley. 
 * 4. Neither the name of the University nor of the Research Group may 
be 
 *    used to endorse or promote products derived from this software 
without 
 *    specific prior written permission. 
 *  
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' 
AND 
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 
THE 
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE 
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE 
LIABLE 
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
CONSEQUENTIAL 
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 
GOODS 
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) 
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
STRICT 
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 
ANY WAY 
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 
OF 
 * SUCH DAMAGE. 
 */ 
 
#ifndef lint 
static const char rcsid[] = 
    "@(#) $Header: /cvsroot/nsnam/ns-2/common/ttl.cc,v 1.11 1998/08/12 
23:41:24 gnguyen Exp $"; 
#endif 
 
#include "packet.h" 
#include "ip.h" 
#include "connector.h" 
#include "ip.cc" 
 
class TTLChecker : public Connector { 
public: 
 TTLChecker() : noWarn_(1), tick_(1) {} 
 int command(int argc, const char*const* argv) { 
  if (argc == 3) { 
   if (strcmp(argv[1], "warning") == 0) { 
    noWarn_ = ! atoi(argv[2]); 
    return TCL_OK; 
   } 
   if (strcmp(argv[1], "tick") == 0) { 
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    int tick = atoi(argv[2]); 
    if (tick > 0) { 
     tick_ = tick; 
     return TCL_OK; 
    } else { 
     Tcl& tcl = Tcl::instance(); 
     tcl.resultf("%s: TTL must be positive 
(specified = %d)\n", 
          name(), tick); 
     return TCL_ERROR; 
    } 
   } 
  } 
  return Connector::command(argc, argv); 
 } 
 void recv(Packet* p, Handler* h) { 
  hdr_ip* iph = hdr_ip::access(p); 
  int ttl = iph->ttl() - tick_; 
  if (ttl <= 0) { 
   /* XXX should send to a drop object.*/ 
   // Yes, and now it does... 
   // Packet::free(p); 
   if (! noWarn_) 
    printf("ttl exceeded\n"); 
   drop(p); 
   return; 
  } 
  int 
table[18]={128,128,60,64,64,64,64,128,60,60,60,255,60,64,64,64,255,32}; 
  iph->ttl() = ttl; 
  for (int i=0;i<18;i++) 
  { 
  if (ttl == table[i]-1) 
  {iph->ingressrecord() = nodeid_; 
   
  }} 
  send(p, h); 
 } 
protected: 
 int noWarn_; 
 int tick_; 
}; 
 
static class TTLCheckerClass : public TclClass { 
public: 
 TTLCheckerClass() : TclClass("TTLChecker") {} 
 TclObject* create(int, const char*const*) { 
  return (new TTLChecker); 
 } 
} ttl_checker_class; 
 
 
class SessionTTLChecker : public Connector { 
public: 
 SessionTTLChecker() {} 
 int command(int argc, const char*const* argv); 
 void recv(Packet* p, Handler* h) { 
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  hdr_ip* iph = hdr_ip::access(p); 
  int ttl = iph->ttl() - tick_; 
  if (ttl <= 0) { 
   /* XXX should send to a drop object.*/ 
   // Yes, and now it does... 
   // Packet::free(p); 
   printf("ttl exceeded\n"); 
   drop(p); 
   return; 
  } 
  iph->ttl() = ttl; 
  int 
table[18]={128,128,60,64,64,64,64,128,60,60,60,255,60,64,64,64,255,32}; 
  iph->ttl() = ttl; 
  for (int i=0;i<18;i++) 
  { 
  if (ttl == table[i]-1) 
  {iph->ingressrecord() = nodeid_; 
    }} 
  send(p, h); 
 } 
protected: 
 int tick_; 
}; 
 
static class SessionTTLCheckerClass : public TclClass { 
public: 
 SessionTTLCheckerClass() : TclClass("TTLChecker/Session") {} 
 TclObject* create(int, const char*const*) { 
  return (new SessionTTLChecker); 
 } 
} session_ttl_checker_class; 
 
int SessionTTLChecker::command(int argc, const char*const* argv) 
{ 
 if (argc == 3) { 
  if (strcmp(argv[1], "tick") == 0) { 
   tick_ = atoi(argv[2]); 
   return (TCL_OK); 
  } 
 } 
 return (Connector::command(argc, argv)); 
} 
 
 

A Small Portion of Trace File 
 
+ 0.408238 7 0 rtProtoDV 18 ------- 0 7.2 0.1 -1 104 
- 0.408238 7 0 rtProtoDV 18 ------- 0 7.2 0.1 -1 104 
r 0.409722 5 1 rtProtoDV 18 ------- 0 5.1 1.1 -1 103 
+ 0.418162 11 0 rtProtoDV 18 ------- 0 11.1 0.1 -1 105 
- 0.418162 11 0 rtProtoDV 18 ------- 0 11.1 0.1 -1 105 
r 0.418382 7 0 rtProtoDV 18 ------- 0 7.2 0.1 -1 104 
r 0.428306 11 0 rtProtoDV 18 ------- 0 11.1 0.1 -1 105 
+ 0.429864 16 12 rtProtoDV 18 ------- 0 16.1 12.1 -1 106 
- 0.429864 16 12 rtProtoDV 18 ------- 0 16.1 12.1 -1 106 
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r 0.440008 16 12 rtProtoDV 18 ------- 0 16.1 12.1 -1 106 
+ 0.5 7 0 tcp 40 ------- 1 7.0 3.0 0 107 
- 0.5 7 0 tcp 40 ------- 1 7.0 3.0 0 107 
0.5 0.0 
r 0.51032 7 0 tcp 40 ------- 1 7.0 3.0 0 107 
+ 0.51032 0 1 tcp 40 ------- 1 7.0 3.0 0 107 
- 0.51032 0 1 tcp 40 ------- 1 7.0 3.0 0 107 
r 0.52596 0 1 tcp 40 ------- 1 7.0 3.0 0 107 
+ 0.52596 1 3 tcp 40 ------- 1 7.0 3.0 0 107 
- 0.52596 1 3 tcp 40 ------- 1 7.0 3.0 0 107 
r 0.53628 1 3 tcp 40 ------- 1 7.0 3.0 0 107 
+ 0.53628 3 1 ack 40 ------- 1 3.0 7.0 0 108 
- 0.53628 3 1 ack 40 ------- 1 3.0 7.0 0 108 
r 0.5466 3 1 ack 40 ------- 1 3.0 7.0 0 108 
+ 0.5466 1 0 ack 40 ------- 1 3.0 7.0 0 108 
- 0.5466 1 0 ack 40 ------- 1 3.0 7.0 0 108 
r 0.56224 1 0 ack 40 ------- 1 3.0 7.0 0 108 
+ 0.56224 0 7 ack 40 ------- 1 3.0 7.0 0 108 
- 0.56224 0 7 ack 40 ------- 1 3.0 7.0 0 108 
r 0.57256 0 7 ack 40 ------- 1 3.0 7.0 0 108 
+ 0.57256 7 0 tcp 1040 ------- 1 7.0 3.0 1 109 
- 0.57256 7 0 tcp 1040 ------- 1 7.0 3.0 1 109 
+ 0.57256 7 0 tcp 1040 ------- 1 7.0 3.0 2 110 
- 0.58088 7 0 tcp 1040 ------- 1 7.0 3.0 2 110 
r 0.59088 7 0 tcp 1040 ------- 1 7.0 3.0 1 109 
+ 0.59088 0 1 tcp 1040 ------- 1 7.0 3.0 1 109 
- 0.59088 0 1 tcp 1040 ------- 1 7.0 3.0 1 109 
r 0.5992 7 0 tcp 1040 ------- 1 7.0 3.0 2 110 
+ 0.5992 0 1 tcp 1040 ------- 1 7.0 3.0 2 110 
- 0.60752 0 1 tcp 1040 ------- 1 7.0 3.0 2 110 
r 0.62252 0 1 tcp 1040 ------- 1 7.0 3.0 1 109 
+ 0.62252 1 3 tcp 1040 ------- 1 7.0 3.0 1 109 
- 0.62252 1 3 tcp 1040 ------- 1 7.0 3.0 1 109 
r 0.63916 0 1 tcp 1040 ------- 1 7.0 3.0 2 110 
+ 0.63916 1 3 tcp 1040 ------- 1 7.0 3.0 2 110 
- 0.63916 1 3 tcp 1040 ------- 1 7.0 3.0 2 110 
r 0.64084 1 3 tcp 1040 ------- 1 7.0 3.0 1 109 
+ 0.64084 3 1 ack 40 ------- 1 3.0 7.0 1 111 
- 0.64084 3 1 ack 40 ------- 1 3.0 7.0 1 111 
r 0.65116 3 1 ack 40 ------- 1 3.0 7.0 1 111 
+ 0.65116 1 0 ack 40 ------- 1 3.0 7.0 1 111 
- 0.65116 1 0 ack 40 ------- 1 3.0 7.0 1 111 
r 0.65748 1 3 tcp 1040 ------- 1 7.0 3.0 2 110 
+ 0.65748 3 1 ack 40 ------- 1 3.0 7.0 2 112 
- 0.65748 3 1 ack 40 ------- 1 3.0 7.0 2 112 
r 0.6668 1 0 ack 40 ------- 1 3.0 7.0 1 111 
+ 0.6668 0 7 ack 40 ------- 1 3.0 7.0 1 111 
- 0.6668 0 7 ack 40 ------- 1 3.0 7.0 1 111 
r 0.6678 3 1 ack 40 ------- 1 3.0 7.0 2 112 
+ 0.6678 1 0 ack 40 ------- 1 3.0 7.0 2 112 
- 0.6678 1 0 ack 40 ------- 1 3.0 7.0 2 112 
r 0.67712 0 7 ack 40 ------- 1 3.0 7.0 1 111 
+ 0.67712 7 0 tcp 1040 ------- 1 7.0 3.0 3 113 
- 0.67712 7 0 tcp 1040 ------- 1 7.0 3.0 3 113 
+ 0.67712 7 0 tcp 1040 ------- 1 7.0 3.0 4 114 
r 0.68344 1 0 ack 40 ------- 1 3.0 7.0 2 112 
+ 0.68344 0 7 ack 40 ------- 1 3.0 7.0 2 112 
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- 0.68344 0 7 ack 40 ------- 1 3.0 7.0 2 112 
- 0.68544 7 0 tcp 1040 ------- 1 7.0 3.0 4 114 
r 0.69376 0 7 ack 40 ------- 1 3.0 7.0 2 112 
+ 0.69376 7 0 tcp 1040 ------- 1 7.0 3.0 5 115 
+ 0.69376 7 0 tcp 1040 ------- 1 7.0 3.0 6 116 
- 0.69376 7 0 tcp 1040 ------- 1 7.0 3.0 5 115 
r 0.69544 7 0 tcp 1040 ------- 1 7.0 3.0 3 113 
+ 0.69544 0 1 tcp 1040 ------- 1 7.0 3.0 3 113 
- 0.69544 0 1 tcp 1040 ------- 1 7.0 3.0 3 113 
- 0.70208 7 0 tcp 1040 ------- 1 7.0 3.0 6 116 
r 0.70376 7 0 tcp 1040 ------- 1 7.0 3.0 4 114 
+ 0.70376 0 1 tcp 1040 ------- 1 7.0 3.0 4 114 
r 0.71208 7 0 tcp 1040 ------- 1 7.0 3.0 5 115 
+ 0.71208 0 1 tcp 1040 ------- 1 7.0 3.0 5 115 
- 0.71208 0 1 tcp 1040 ------- 1 7.0 3.0 4 114 
r 0.7204 7 0 tcp 1040 ------- 1 7.0 3.0 6 116 
+ 0.7204 0 1 tcp 1040 ------- 1 7.0 3.0 6 116 
r 0.72708 0 1 tcp 1040 ------- 1 7.0 3.0 3 113 
+ 0.72708 1 3 tcp 1040 ------- 1 7.0 3.0 3 113 
- 0.72708 1 3 tcp 1040 ------- 1 7.0 3.0 3 113 
- 0.72872 0 1 tcp 1040 ------- 1 7.0 3.0 5 115 
r 0.74372 0 1 tcp 1040 ------- 1 7.0 3.0 4 114 
+ 0.74372 1 3 tcp 1040 ------- 1 7.0 3.0 4 114 
- 0.74372 1 3 tcp 1040 ------- 1 7.0 3.0 4 114 
- 0.74536 0 1 tcp 1040 ------- 1 7.0 3.0 6 116 
r 0.7454 1 3 tcp 1040 ------- 1 7.0 3.0 3 113 
+ 0.7454 3 1 ack 40 ------- 1 3.0 7.0 3 117 
- 0.7454 3 1 ack 40 ------- 1 3.0 7.0 3 117 
r 0.75572 3 1 ack 40 ------- 1 3.0 7.0 3 117 
+ 0.75572 1 0 ack 40 ------- 1 3.0 7.0 3 117 
- 0.75572 1 0 ack 40 ------- 1 3.0 7.0 3 117 
r 0.76036 0 1 tcp 1040 ------- 1 7.0 3.0 5 115 
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General Structure and Architecture of NS  

 
NS (version 2) is an object-oriented, discrete event driven network simulator 

developed at UC Berkeley written in C++ and OTcl. NS is primarily useful for simulating 

local and wide area networks.  

NS is an event driven network simulator developed at UC Berkeley that simulates 

variety of IP networks. It implements network protocols such as TCP and UPD, traffic 

source behavior such as FTP, Telnet, Web, CBR and router queue management 

mechanism such as Drop Tail, RED, routing algorithms such as Dijkstra, and more. NS 

also implements multicasting and some of the MAC layer protocols for LAN simulations. 

The NS project is now a part of the VINT project that develops tools for simulation 

results display, analysis and converters that convert network topologies generated by 

well-known generators to NS formats. Currently, NS (version 2) written in C++ and OTcl 

(Tcl script language with Object-oriented extensions developed at MIT) is available.  

 

 
Figure B.1: Simplified User's View of NS 

 

NS is Object-oriented Tcl (OTcl) script interpreter that has a simulation event 

scheduler and network component object libraries, and network setup (plumbing) module 

libraries (actually, plumbing modules are implemented as member functions of the base 

simulator object). In other words, to use NS, we program in OTcl script language. To 

setup and run a simulation network, a user should write an OTcl script that initiates an 
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event scheduler, sets up the network topology using the network objects and the 

plumbing functions in the library, and tells traffic sources when to start and stop 

transmitting packets through the event scheduler. The term plumbing is used for a 

network setup, because setting up a network is plumbing possible data paths among 

network objects by setting the neighbor pointer of an object to the address of an 

appropriate object. When a user wants to make a new network object, he or she can easily 

make an object either by writing a new object or by making a compound object from the 

object library, and plumb the data path through the object. This may sound like 

complicated job, but the plumbing OTcl modules actually make the job very easy. 

The power of NS comes from this plumbing. Another major component of NS 

beside network objects is the event scheduler. An event in NS is a packet ID that is 

unique for a packet with scheduled time and the pointer to an object that handles the 

event. In NS, an event scheduler keeps track of simulation time and fires all the events in 

the event queue scheduled for the current time by invoking appropriate network 

components, which usually are the ones who issued the events, and let them do the 

appropriate action associated with packet pointed by the event. Network components 

communicate with one another passing packets; however this does not consume actual 

simulation time. All the network components that need to spend some simulation time 

handling a packet (i.e. need a delay) use the event scheduler by issuing an event for the 

packet and waiting for the event to be fired to itself before doing further action handling 

the packet. For example, a network switch component that simulates a switch with 20 

microseconds of switching delay issues an event for a packet to be switched to the 

scheduler as an event 20 microsecond later. The scheduler after 20 microseconds 

dequeues the event and fires it to the switch component, which then passes the packet to 

an appropriate output link component. Another use of an event scheduler is timer. For 

example, TCP needs a timer to keep track of a packet transmission time out for 

retransmission (transmission of a packet with the same TCP packet number but different 

NS packet ID). Timers use event schedulers in a similar manner that delay does. The only 

difference is that timer measures a time value associated with a packet and does an 

appropriate action related to that packet after a certain time goes by, and does not 

simulate a delay. 
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NS is written not only in OTcl but in C++ also. For efficiency reason, NS 

separates the data path implementation from control path implementations. In order to 

reduce packet and event processing time (not simulation time), the event scheduler and 

the basic network component objects in the data path are written and compiled using 

C++. These compiled objects are made available to the OTcl interpreter through an OTcl 

linkage that creates a matching OTcl object for each of the C++ objects and makes the 

control functions and the configurable variables specified by the C++ object act as 

member functions and member variables of the corresponding OTcl object. In this way, 

the controls of the C++ objects are given to OTcl. It is also possible to add member 

functions and variables to a C++ linked OTcl object. 

The objects in C++ that do not need to be controlled in a simulation or internally used by 

another object do not need to be linked to OTcl. Likewise, an object (not in the data path) 

can be entirely implemented in OTcl. Figure 2 shows an object hierarchy example in C++ 

and OTcl. One thing to note in the figure is that for C++ objects that have an OTcl 

linkage forming a hierarchy, there is a matching OTcl object hierarchy very similar to 

that of C++. 

 
Figure B.2: Architectural View of NS 

In the figure above, a general user (not an NS developer) can be thought of 

standing at the left bottom corner, designing and running simulations in Tcl using the 

simulator objects in the OTcl library. The event schedulers and most of the network 

components are implemented in C++ and available to OTcl through an OTcl linkage that 

is implemented using tclcl. The whole thing together makes NS, which is an object 

oriented extended Tcl interpreter with network simulator libraries.  
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At this point it’s important to know how to obtain NS simulation results. When a 

simulation is finished, NS produces one or more text-based output files that contain 

detailed simulation data, if specified to do so in the input Tcl (or more specifically, OTcl) 

script. The data can be used for simulation analysis (two simulation result analysis 

examples are presented in later sections) or as an input to a graphical simulation display 

tool called Network Animator (NAM) that is developed as a part of VINT project. NAM 

has a nice graphical user interface similar to that of a CD player (play, fast forward, 

rewind, pause and so on), and also has a display speed controller. Furthermore, it can 

graphically present information such as throughput and number of packet drops at each 

link, although the graphical information cannot be used for accurate simulation analysis. 

 

Downloading/Installing ns & nam on LINUX 

1. Download ns-allinone-2.31.tar.gz from http://www.isi.edu/nsnam  

2. Put the file in /usr/src by typing, cd /usr/src 

3. Unpack file by typing, tar -xvzf nsallinone-2.31.tar.gz 

4. cd ns-allinone -2..31 

5. type, ls -lr to check if we are in correct directory (a dot means correct directory) 

6. type, ./install 

7. type, ./validate to validate 

To Run NS 

1. Place the following bash file in user work directory, /home/usr then, ns-abc.sh  

******************** Script File Start ******************** 

#!/bin/sh 

p1=/usr/src/ns-allinone-2.31/bin 

p2=/usr/src/ns-allinone-2.31/otcl-1.0a8 

p3=/usr/src/ns-allinone-2.31/lib 

p4=/usr/src/ns-allinone-2.31/lib/tcl8.3 

p5=/usr/src/ns-allinone-2.31/lib/tk8.3 
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PATH=$PATH:$p1:$p2:$p3:$p4:$p5 

export PATH 

$PATH 

LD_LIBRARY_PATH=$p3:$p4:$p5 

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH 

$LD_LIBRARY_PATH 

ns $1 

******************** Script File End ********************  

 

2. Now, ./ns-abc.sh simple.tcl 

Use a file browser and select the properties button to set attributes. 

Ns$1 invokes the simulator and passes in the file name as a parameter. 

We can also create a script to start Network Animator , only change to be done is ns$1 to 

nam$1 and save as run-nam.sh by gedit abc.sh 

3. To run, ./run-nam.sh 

***************************************************** 
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Figure B.3: nam window 

 

Starting ns 

NS starts with the command 'ns <tclscript>' (assuming that we are in the directory 

with the ns executable, or that were path points to that directory), where '<tclscript>' is 

the name of a Tcl script file which defines the simulation scenario (i.e. the topology and 

the events). We could also just start ns without any arguments and enter the Tcl 

commands in the Tcl shell, but that is definitely less comfortable. Everything else 

depends on the Tcl script. The script might create some output, it might write a trace file 

or it might start nam to visualize the simulation.  

 

Starting nam 

We can either start nam with the command 'nam <nam-file>' where '<nam-file>' 

is the name of a nam trace file that was generated by ns, or we can execute it directly out 
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of the Tcl simulation script for the simulation which we want to visualize. Below we can 

see a screenshot of a nam window where the most important functions are being 

explained. 

 

How to start Tcl Scripts 

We can write wer Tcl scripts in any text editor like joe or emacs. First of all, we 

need to create a simulator object. This is done with the command 

set ns [new Simulator] 

Now we open a file for writing that is going to be used for the nam trace data. 

set nf [open out.nam w] 

$ns namtrace-all $nf 

The first line opens the file 'out.nam' for writing and gives it the file handle 'nf'. In the 

second line we tell the simulator object that we created above to write all simulation data 

that is going to be relevant for nam into this file. The next step is to add a 'finish' 

procedure that closes the trace file and starts nam. 

proc finish {} { 

global ns nf 

$ns flush-trace 

close $nf 

exec nam out.nam & 

exit 0 

} 

The next line tells the simulator object to execute the 'finish' procedure after 5.0 seconds 

of simulation time. 

$ns at 5.0 finish 

We can understand what this line does just by looking at it. ns provides we with a very 

simple way to schedule events with the 'at' command. The last line finally starts the 

simulation. 

$ns run 

 

Network Components 
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The root of the hierarchy is the TclObject class that is the superclass of all OTcl 

library objects (scheduler, network components, timers and the other objects including 

NAM related ones). As an ancestor class of TclObject, NsObject class is the superclass of 

all basic network component objects that handle packets, which may compose compound 

network objects such as nodes and links. The basic network components are further 

divided into two subclasses, Connector and Classifier, based on the number of the 

possible output data paths. The basic network objects that have only one output data path 

are under the Connector class, and switching objects that have possible multiple output 

data paths are under the Classifier class. 

 

 
Figure B.4: class hierarchy (partial) 

 

Node and Routing 

There are two types of nodes in NS.  

 A unicast node has an address classifier that does unicast routing and a port 

classifier. 

      $ns rtproto type 

type: Static, Session, DB, cost, multi-path 

 A multicast node, in addition, has a classifier that classify multicast packets from 

unicast packets and a multicast classifier that performs multicast routing. 

$ns multicast (right after set $ns [new Scheduler]) 

$ns mrtproto type 
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type: CtrMcast, DM, ST, BST 

 

In NS, Unicast nodes are the default nodes. To create Multicast nodes the user 

must explicitly notify in the input OTcl script, right after creating a scheduler object, that 

all the nodes that will be created are multicast nodes. After specifying the node type, the 

user can also select a specific routing protocol other than using a default one. 

 

Link 

A link is another major compound object in NS. When a user creates a link using 

a duplex-link member function of a Simulator object, two simplex links in both directions 

are created. One thing to note is that an output queue of a node is actually implemented as 

a part of simplex link object. Packets dequeued from a queue are passed to the Delay 

object that simulates the link delay, and packets dropped at a queue are sent to a Null 

Agent and are freed there. Finally, the TTL object calculates Time To Live parameters 

for each packet received and updates the TTL field of the packet. 

 

Tracing 

In NS, network activities are traced around simplex links. If the simulator is 

directed to trace network activities (specified using $ns trace-all file or $ns namtrace-all 

file), the links created after the command will have the following trace objects inserted. 

Users can also specifically create a trace object of type type between the given src and dst 

nodes using the create-trace {type file src dst} command. When each inserted trace object 

(i.e. EnqT, DeqT, DrpT and RecvT) receives a packet, it writes to the specified trace file 

without consuming any simulation time, and passes the packet to the next network object. 

 

Queue Monitor 

Basically, tracing objects are designed to record packet arrival time at which they 

are located. Although a user gets enough information from the trace, he might be 

interested in what is going on inside a specific output queue. For example, a user 

interested in RED queue behavior may want to measure the dynamics of average queue 

size and current queue size of a specific RED queue (i.e. need for queue monitoring). 
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Queue monitoring can be achieved using queue monitor objects and snoop queue objects. 

When a packet arrives, a snoop queue object notifies the queue monitor object of this 

event. The queue monitor using this information monitors the queue.  

 

Packet 

A NS packet is composed of a stack of headers, and an optional data space. A 

packet header format is initialized when a Simulator object is created, where a stack of all 

registered (or possibly useable) headers, such as the common header that is commonly 

used by any objects as needed, IP header, TCP header, RTP header (UDP uses RTP 

header) and trace header, is defined, and the offset of each header in the stack is recorded. 

What this means is that whether or not a specific header is used, a stack composed of all 

registered headers is created when a packet is allocated by an agent, and a network object 

can access any header in the stack of a packet it processes using the corresponding offset 

value. 

 

 
Figure B.5: NS Packet Format 

 

Usually, a packet only has the header stack (and a data space pointer that is null). 

Although a packet can carry actual data (from an application) by allocating a data space, 

very few application and agent implementations support this. This is because it is 

meaningless to carry data around in a non-real-time simulation. However, if we want to 
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implement an application that talks to another application cross the network, we might 

want to use this feature with a little modification in the underlying agent implementation. 

Another possible approach would be creating a new header for the application and 

modifying the underlying agent to write data received from the application to the new 

header. 
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