NS-2

(Network Simulator-2)

General Structure and Architecture of NS
NS (version 2) is an object-oriented, discrete event driven network simulator developed at UC Berkeley written in C++ and OTcl. NS is primarily useful for simulating local and wide area networks.

NS is an event driven network simulator developed at UC Berkeley that simulates variety of IP networks. It implements network protocols such as TCP and UPD, traffic source behavior such as FTP, Telnet, Web, CBR and router queue management mechanism such as Drop Tail, RED, routing algorithms such as Dijkstra, and more. NS also implements multicasting and some of the MAC layer protocols for LAN simulations. The NS project is now a part of the VINT project that develops tools for simulation results display, analysis and converters that convert network topologies generated by well-known generators to NS formats. Currently, NS (version 2) written in C++ and OTcl (Tcl script language with Object-oriented extensions developed at MIT) is available.
[image: image1.emf]
Figure B.1: Simplified User's View of NS

NS is Object-oriented Tcl (OTcl) script interpreter that has a simulation event scheduler and network component object libraries, and network setup (plumbing) module libraries (actually, plumbing modules are implemented as member functions of the base simulator object). In other words, to use NS, we program in OTcl script language. To setup and run a simulation network, a user should write an OTcl script that initiates an event scheduler, sets up the network topology using the network objects and the plumbing functions in the library, and tells traffic sources when to start and stop transmitting packets through the event scheduler. The term plumbing is used for a network setup, because setting up a network is plumbing possible data paths among network objects by setting the neighbor pointer of an object to the address of an appropriate object. When a user wants to make a new network object, he or she can easily make an object either by writing a new object or by making a compound object from the object library, and plumb the data path through the object. This may sound like complicated job, but the plumbing OTcl modules actually make the job very easy.

The power of NS comes from this plumbing. Another major component of NS beside network objects is the event scheduler. An event in NS is a packet ID that is unique for a packet with scheduled time and the pointer to an object that handles the event. In NS, an event scheduler keeps track of simulation time and fires all the events in the event queue scheduled for the current time by invoking appropriate network components, which usually are the ones who issued the events, and let them do the appropriate action associated with packet pointed by the event. Network components communicate with one another passing packets; however this does not consume actual simulation time. All the network components that need to spend some simulation time handling a packet (i.e. need a delay) use the event scheduler by issuing an event for the packet and waiting for the event to be fired to itself before doing further action handling the packet. For example, a network switch component that simulates a switch with 20 microseconds of switching delay issues an event for a packet to be switched to the scheduler as an event 20 microsecond later. The scheduler after 20 microseconds dequeues the event and fires it to the switch component, which then passes the packet to an appropriate output link component. Another use of an event scheduler is timer. For example, TCP needs a timer to keep track of a packet transmission time out for retransmission (transmission of a packet with the same TCP packet number but different NS packet ID). Timers use event schedulers in a similar manner that delay does. The only difference is that timer measures a time value associated with a packet and does an appropriate action related to that packet after a certain time goes by, and does not simulate a delay.

NS is written not only in OTcl but in C++ also. For efficiency reason, NS separates the data path implementation from control path implementations. In order to reduce packet and event processing time (not simulation time), the event scheduler and the basic network component objects in the data path are written and compiled using C++. These compiled objects are made available to the OTcl interpreter through an OTcl linkage that creates a matching OTcl object for each of the C++ objects and makes the control functions and the configurable variables specified by the C++ object act as member functions and member variables of the corresponding OTcl object. In this way, the controls of the C++ objects are given to OTcl. It is also possible to add member functions and variables to a C++ linked OTcl object.

The objects in C++ that do not need to be controlled in a simulation or internally used by another object do not need to be linked to OTcl. Likewise, an object (not in the data path) can be entirely implemented in OTcl. Figure 2 shows an object hierarchy example in C++ and OTcl. One thing to note in the figure is that for C++ objects that have an OTcl linkage forming a hierarchy, there is a matching OTcl object hierarchy very similar to that of C++.

[image: image2.emf]
Figure B.2: Architectural View of NS

In the figure above, a general user (not an NS developer) can be thought of standing at the left bottom corner, designing and running simulations in Tcl using the simulator objects in the OTcl library. The event schedulers and most of the network components are implemented in C++ and available to OTcl through an OTcl linkage that is implemented using tclcl. The whole thing together makes NS, which is an object oriented extended Tcl interpreter with network simulator libraries.

At this point it’s important to know how to obtain NS simulation results. When a simulation is finished, NS produces one or more text-based output files that contain detailed simulation data, if specified to do so in the input Tcl (or more specifically, OTcl) script. The data can be used for simulation analysis (two simulation result analysis examples are presented in later sections) or as an input to a graphical simulation display tool called Network Animator (NAM) that is developed as a part of VINT project. NAM has a nice graphical user interface similar to that of a CD player (play, fast forward, rewind, pause and so on), and also has a display speed controller. Furthermore, it can graphically present information such as throughput and number of packet drops at each link, although the graphical information cannot be used for accurate simulation analysis.

Downloading/Installing ns & nam on LINUX

1. Download ns-allinone-2.31.tar.gz from http://www.isi.edu/nsnam
2. Put the file in /usr/src by typing, cd /usr/src
3. Unpack file by typing, tar -xvzf nsallinone-2.31.tar.gz
4. cd ns-allinone -2..31
5. type, ls -lr to check if we are in correct directory (a dot means correct directory)
6. type, ./install
7. type, ./validate to validate

To Run NS
1. Place the following bash file in user work directory, /home/usr then, ns-abc.sh
******************** Script File Start ********************
#!/bin/sh

p1=/usr/src/ns-allinone-2.31/bin
p2=/usr/src/ns-allinone-2.31/otcl-1.0a8
p3=/usr/src/ns-allinone-2.31/lib
p4=/usr/src/ns-allinone-2.31/lib/tcl8.3
p5=/usr/src/ns-allinone-2.31/lib/tk8.3

PATH=$PATH:$p1:$p2:$p3:$p4:$p5
export PATH

$PATH

LD_LIBRARY_PATH=$p3:$p4:$p5
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH

$LD_LIBRARY_PATH

ns $1

******************** Script File End ********************

2. Now, ./ns-abc.sh simple.tcl
Use a file browser and select the properties button to set attributes.
Ns$1 invokes the simulator and passes in the file name as a parameter.
We can also create a script to start Network Animator , only change to be done is ns$1 to nam$1 and save as run-nam.sh by gedit abc.sh
3. To run, ./run-nam.sh

[image: image3.png]Stop aximation Fast forward by 23*Step seconds
| Playannaton
\ Y QU Gyt animation time

Play aniraton tackwasds
’ \ / Tome betvreen two axmation ‘frames”

Change the "Step’ parammeter

Fewind by 25 Step seconds

ST IEIF

Zoemin —____

Zoom aut

Animation area
L ¥
=

Diag slides toa speific —— . 1|
peistintie Autolayout: Ca [075 O [075 Merations [10, re-tay Fanao layost

SET | i |

/ \
Stracve fosoe fos ot smoded Mumicer of i fos ayont

Repulsive foree for leyoirt modd.

Figure B.3: nam window
Starting ns

NS starts with the command 'ns <tclscript>' (assuming that we are in the directory with the ns executable, or that were path points to that directory), where '<tclscript>' is the name of a Tcl script file which defines the simulation scenario (i.e. the topology and the events). We could also just start ns without any arguments and enter the Tcl commands in the Tcl shell, but that is definitely less comfortable. Everything else depends on the Tcl script. The script might create some output, it might write a trace file or it might start nam to visualize the simulation.
Starting nam

We can either start nam with the command 'nam <nam-file>' where '<nam-file>' is the name of a nam trace file that was generated by ns, or we can execute it directly out of the Tcl simulation script for the simulation which we want to visualize. Below we can see a screenshot of a nam window where the most important functions are being explained.

How to start Tcl Scripts

We can write wer Tcl scripts in any text editor like joe or emacs. First of all, we need to create a simulator object. This is done with the command

set ns [new Simulator]

Now we open a file for writing that is going to be used for the nam trace data.

set nf [open out.nam w]

$ns namtrace-all $nf

The first line opens the file 'out.nam' for writing and gives it the file handle 'nf'. In the second line we tell the simulator object that we created above to write all simulation data that is going to be relevant for nam into this file. The next step is to add a 'finish' procedure that closes the trace file and starts nam.

proc finish {} {

global ns nf

$ns flush-trace

close $nf

exec nam out.nam &

exit 0

}

The next line tells the simulator object to execute the 'finish' procedure after 5.0 seconds of simulation time.

$ns at 5.0 finish

We can understand what this line does just by looking at it. ns provides we with a very simple way to schedule events with the 'at' command. The last line finally starts the simulation.

$ns run

Network Components
The root of the hierarchy is the TclObject class that is the superclass of all OTcl library objects (scheduler, network components, timers and the other objects including NAM related ones). As an ancestor class of TclObject, NsObject class is the superclass of all basic network component objects that handle packets, which may compose compound network objects such as nodes and links. The basic network components are further divided into two subclasses, Connector and Classifier, based on the number of the possible output data paths. The basic network objects that have only one output data path are under the Connector class, and switching objects that have possible multiple output data paths are under the Classifier class.
[image: image4.emf]
Figure B.4: class hierarchy (partial)

Node and Routing

There are two types of nodes in NS.
· A unicast node has an address classifier that does unicast routing and a port classifier.
 $ns rtproto type

type: Static, Session, DB, cost, multi-path
· A multicast node, in addition, has a classifier that classify multicast packets from unicast packets and a multicast classifier that performs multicast routing.
$ns multicast (right after set $ns [new Scheduler])

$ns mrtproto type

type: CtrMcast, DM, ST, BST
In NS, Unicast nodes are the default nodes. To create Multicast nodes the user must explicitly notify in the input OTcl script, right after creating a scheduler object, that all the nodes that will be created are multicast nodes. After specifying the node type, the user can also select a specific routing protocol other than using a default one.

Link

A link is another major compound object in NS. When a user creates a link using a duplex-link member function of a Simulator object, two simplex links in both directions are created. One thing to note is that an output queue of a node is actually implemented as a part of simplex link object. Packets dequeued from a queue are passed to the Delay object that simulates the link delay, and packets dropped at a queue are sent to a Null Agent and are freed there. Finally, the TTL object calculates Time To Live parameters for each packet received and updates the TTL field of the packet.

Tracing

In NS, network activities are traced around simplex links. If the simulator is directed to trace network activities (specified using $ns trace-all file or $ns namtrace-all file), the links created after the command will have the following trace objects inserted. Users can also specifically create a trace object of type type between the given src and dst nodes using the create-trace {type file src dst} command. When each inserted trace object (i.e. EnqT, DeqT, DrpT and RecvT) receives a packet, it writes to the specified trace file without consuming any simulation time, and passes the packet to the next network object.
Queue Monitor

Basically, tracing objects are designed to record packet arrival time at which they are located. Although a user gets enough information from the trace, he might be interested in what is going on inside a specific output queue. For example, a user interested in RED queue behavior may want to measure the dynamics of average queue size and current queue size of a specific RED queue (i.e. need for queue monitoring). Queue monitoring can be achieved using queue monitor objects and snoop queue objects. When a packet arrives, a snoop queue object notifies the queue monitor object of this event. The queue monitor using this information monitors the queue.

Packet

A NS packet is composed of a stack of headers, and an optional data space. A packet header format is initialized when a Simulator object is created, where a stack of all registered (or possibly useable) headers, such as the common header that is commonly used by any objects as needed, IP header, TCP header, RTP header (UDP uses RTP header) and trace header, is defined, and the offset of each header in the stack is recorded. What this means is that whether or not a specific header is used, a stack composed of all registered headers is created when a packet is allocated by an agent, and a network object can access any header in the stack of a packet it processes using the corresponding offset value.
[image: image5.emf]
Figure B.5: NS Packet Format

Usually, a packet only has the header stack (and a data space pointer that is null). Although a packet can carry actual data (from an application) by allocating a data space, very few application and agent implementations support this. This is because it is meaningless to carry data around in a non-real-time simulation. However, if we want to implement an application that talks to another application cross the network, we might want to use this feature with a little modification in the underlying agent implementation. Another possible approach would be creating a new header for the application and modifying the underlying agent to write data received from the application to the new header.
References
[1] “NS Manual”, The VINT Project from http://www.isi.edu/nsnam/ns/doc
[2] “NS tutorial” by Marc Greis. http://www.isi.edu/nsnam/ns/tutorial/nsmenu.html
[3] “NS by Examples” by Jae Chung and Mark Claypool.

[4] John K. Ousterhout, “Tcl and the Tk Toolkit”’, Pearson Education, 1994
